

Sustainable Energy Transition Framework for Emerging Economies: Policy Pathways and Implementation Gaps

Mohammed Lawal Giwah 1* , Zamathula Sikhakhane Nwokediegwu 2 , Emmanuel Augustine Etukudoh 3 , Ebimor Yinka Gbabo 4

- ¹ Kwara State Government Ilorin, Nigeria
- ² Independent Researcher, Durban, South Africa
- ³ Independent Researcher, Nigeria
- ⁴ Rolls Royce SMR, UK
- * Corresponding Author: Mohammed Lawal Giwah

Article Info

P-ISSN: 3051-3502 **E-ISSN:** 3051-3510

Volume: 01 Issue: 01

January - June 2020 Received: 02-01-2020 Accepted: 03-02-2020 Published: 04-03-2020

Page No: 01-06

Abstract

Emerging economies face unique challenges in transitioning to sustainable energy systems amid growing demand, infrastructural deficits, and socioeconomic disparities. This paper develops a comprehensive framework that integrates theoretical insights and practical policy pathways to facilitate sustainable energy transitions tailored to these contexts. It examines key energy transition theories and models, highlights the roles of regulatory, financial, and market-based policy instruments, and emphasizes the importance of governance and institutional capacity. The study identifies critical pathways including renewable energy integration, energy efficiency, and diversified financing, while also addressing major implementation gaps such as institutional fragmentation, equity concerns, and technical constraints. Strategic implications underscore the need for integrated, adaptive policymaking that balances environmental sustainability with economic growth and social inclusion. The framework offers actionable recommendations for policymakers and stakeholders to overcome barriers, enhance coordination, mobilize investment, and promote inclusive participation. By fostering innovation, resilience, and equity, this study provides a roadmap for emerging economies to accelerate their sustainable energy transitions and contribute to global climate goals.

DOI: https://doi.org/10.54660/IJMER.2020.1.1.01-06

Keywords: Sustainable Energy Transition, Emerging Economies, Renewable Energy Integration, Energy Efficiency, Policy Implementation, Institutional Capacity

1. Introduction

1.1 Context and Importance of Sustainable Energy Transitions

Energy systems worldwide are undergoing rapid transformations driven by environmental concerns, technological advances, and shifting economic paradigms. Emerging economies, in particular, face unique challenges as they strive to balance expanding energy access, economic growth, and environmental sustainability [1]. Unlike developed countries with relatively stable energy infrastructures, these economies often contend with growing populations, increasing urbanization, and rising energy demand, all while grappling with climate change pressures. The urgency to transition away from fossil-fuel-dependent energy systems toward cleaner, more sustainable alternatives is therefore critical to ensuring long-term socioeconomic development [2, 3]. From an environmental perspective, the imperative for sustainable energy transitions is driven primarily by the need to reduce greenhouse gas emissions and mitigate the adverse impacts of climate change. Emerging economies are significant contributors to global emissions due to their expanding industrial sectors and energy consumption patterns [4]. Transitioning to renewable

energy sources and improving energy efficiency are essential strategies to meet international climate commitments, such as those under the Paris Agreement.

Moreover, sustainable energy transitions contribute to preserving biodiversity, reducing air pollution, and safeguarding natural resources, thereby supporting broader ecological resilience ^[5, 6].

Economically and socially, sustainable energy transitions present opportunities and challenges. On one hand, they can stimulate innovation, create jobs in green industries, and enhance energy security. On the other hand, they require substantial investments, institutional reforms, and social acceptance. Ensuring equitable access to affordable and clean energy is vital for reducing poverty and improving health outcomes, particularly in underserved communities. Consequently, understanding the multifaceted importance of sustainable energy transitions helps frame the necessity for robust policy frameworks that are contextually appropriate for emerging economies [7,8].

1.2 Conceptualizing Sustainable Energy Transition

Sustainable energy transition refers to the process of shifting an energy system from fossil fuel dependency to one that prioritizes renewable energy, energy efficiency, and environmental sustainability while ensuring economic viability and social equity. It is a multidimensional concept involving technological, institutional, financial, and behavioral changes aimed at achieving a low-carbon, resilient, and inclusive energy future. Unlike simple energy transitions that focus mainly on replacing energy sources, sustainable transitions integrate considerations of equity, accessibility, and long-term system resilience [9].

Core principles of sustainable energy transitions include decarbonization, energy security, affordability, and social inclusion. Decarbonization involves reducing carbon emissions through renewable energy adoption and efficiency improvements. Energy security emphasizes the reliability and resilience of energy supplies against shocks. Affordability ensures energy is accessible to all socioeconomic groups, minimizing energy poverty. Social inclusion advocates for the participation and benefits of marginalized populations in energy systems. These principles serve as guiding pillars to ensure that energy transitions contribute positively to the Sustainable Development Goals [2, 10]

Distinguishing between general energy transitions and sustainable energy transitions is crucial. While all energy transitions involve changes in energy systems, sustainable transitions specifically aim to balance environmental stewardship with social justice and economic growth. Many emerging economies face pressures to rapidly expand energy infrastructure, which can lead to continued fossil fuel reliance if sustainability is not integrated. Thus, sustainable energy transitions demand holistic policy approaches that align technical innovation with equitable governance and environmental responsibility [11, 12].

1.3 Research Objectives

This paper aims to develop a comprehensive framework for sustainable energy transition tailored to the unique contexts of emerging economies. The primary objective is to identify effective policy pathways that facilitate the adoption of sustainable energy technologies while addressing common implementation gaps. By synthesizing theoretical insights and empirical evidence, the framework seeks to guide policymakers in designing adaptive, inclusive, and integrated strategies that overcome barriers such as institutional

fragmentation, financing challenges, and social resistance.

The framework's development is significant for both policy and practice as emerging economies represent a critical frontier in the global energy transition. Their choices will largely determine the pace and scale of decarbonization efforts worldwide, given their rapid economic growth and increasing energy demand. A well-structured policy framework enables these countries to capitalize on their renewable energy potential, improve energy efficiency, and foster innovation ecosystems while ensuring just transitions that protect vulnerable populations.

Furthermore, this research addresses the persistent disconnect between policy formulation and implementation observed in many emerging economies. By highlighting common gaps and proposing mechanisms for effective governance, stakeholder engagement, and monitoring, the framework enhances the practical applicability of transition policies. Ultimately, this study contributes to bridging theory and practice, supporting emerging economies in navigating complex energy transitions that are sustainable, equitable, and resilient.

2. Theoretical Foundations and Policy Frameworks2.1 Energy Transition Theories and Models

Energy transition theories provide essential insights into the complex processes of shifting from fossil fuel-based systems to sustainable energy paradigms. Among the most influential frameworks is the Multi-Level Perspective (MLP), which conceptualizes transitions as interactions across three levels: niche innovations, socio-technical regimes, and landscape pressures [13]. Niche innovations, such as renewable technologies, emerge at the micro-level, challenging established regimes, dominant energy infrastructures, and practices, within broader socio-technical landscapes shaped by political, economic, and cultural forces. This dynamic interplay helps explain the incremental and non-linear nature of energy transitions [14, 15].

For emerging economies, energy transition theories must account for distinct contextual realities, including rapid urbanization, infrastructure deficits, and development imperatives. Unlike mature economies with established energy regimes, emerging economies often face the simultaneous challenges of expanding access while integrating sustainable technologies. The transition process is further complicated by institutional weaknesses and socioeconomic disparities, requiring adaptations of standard models to fit these unique conditions better. Concepts such as "leapfrogging" — where emerging economies bypass traditional fossil-fuel phases by adopting advanced renewable technologies — highlight the transformative potential but also the challenges inherent in such transitions [16].

Incorporating these theoretical perspectives helps policymakers understand that energy transitions are multidimensional, requiring interventions at various systemic levels. It also emphasizes the importance of aligning technological innovation with supportive institutions and societal acceptance, which is critical for the successful implementation of sustainable energy pathways in emerging economies.

2.2 Policy Instruments for Sustainable Energy

Effective sustainable energy transitions hinge on a diverse set of policy instruments designed to incentivize, regulate, and facilitate change. Regulatory tools include standards, mandates, and targets, such as renewable portfolio standards or energy efficiency requirements. These provide clear legal frameworks that set expectations and compel actors to adopt cleaner energy practices. For example, feed-in tariffs and renewable energy certificates are widely used to guarantee market access and stable returns for renewable energy producers, thus encouraging investment [17, 18].

Financial instruments, such as subsidies, tax incentives, and grants, reduce upfront costs and risks associated with sustainable technologies, which are particularly critical in emerging economies where capital constraints often hinder adoption. Public-private partnerships and concessional financing mechanisms also mobilize capital while spreading risk among stakeholders. Furthermore, carbon pricing mechanisms, either through taxes or cap-and-trade systems, internalize environmental externalities, aligning economic signals with sustainability objectives [19].

Market-based tools complement regulatory and financial measures by fostering competition, innovation, and consumer choice. These include mechanisms such as tradable green certificates, auctions for renewable projects, and demand response programs. By leveraging market dynamics, these tools encourage cost reductions and efficiency improvements. The strategic combination and sequencing of these instruments enable emerging economies to design tailored policy mixes that accelerate sustainable energy transitions while balancing economic and social goals [20].

2.3 Governance and Institutional Arrangements

Governance and institutional capacity are pivotal to the successful design and implementation of sustainable energy policies. Emerging economies often face fragmented institutional landscapes where overlapping responsibilities among ministries, agencies, and local governments complicate coordination. Strengthening institutional capacity involves enhancing technical expertise, improving regulatory frameworks, and fostering transparent decision-making processes. Robust institutions provide the foundation for enforcing policies, monitoring progress, and adapting to evolving challenges [21, 22].

Multi-level governance plays a crucial role in managing energy transitions, as responsibilities and impacts span local, national, and regional scales. Coordination between these levels is essential to align policies, share resources, and harmonize objectives. For instance, national strategies may set renewable energy targets while local authorities oversee implementation and community engagement. Effective vertical integration mitigates policy incoherence and supports consistent regulatory environments [23, 24].

Enablers of good governance include stakeholder participation, accountability mechanisms, and knowledge-sharing platforms. Inclusive governance ensures that marginalized groups have a voice, fostering legitimacy and social acceptance. Additionally, partnerships between the government, the private sector, and civil society can mobilize resources and expertise. Overcoming governance challenges requires institutional reforms that promote collaboration, flexibility, and resilience, equipping emerging economies to manage the complexities of sustainable energy transitions effectively [25].

3. Policy Pathways for Sustainable Energy Transition 3.1 Renewable Energy Integration and Innovation

Renewable energy integration is central to sustainable energy transitions in emerging economies. Successful adoption of technologies such as solar, wind, biomass, and small hydro depends on the development of appropriate infrastructure, including grid modernization, storage solutions, and distributed energy systems. Emerging economies often face challenges related to aging or insufficient grid capacity, necessitating investments in smart grid technologies and decentralized energy systems to accommodate variable renewable energy sources. Infrastructure development must also prioritize resilience against climate impacts and operational reliability [26, 27].

Incentive structures play a pivotal role in stimulating renewable energy innovation and market uptake. Policies such as feed-in tariffs, tax credits, and renewable energy auctions create financial certainty for investors and reduce barriers to entry. Additionally, supporting research and development fosters innovation ecosystems that can adapt technologies to local conditions and promote cost reductions. Government-backed incubators, technology parks, and partnerships with academic institutions nurture entrepreneurship and accelerate the commercialization of clean energy solutions [28].

Innovation ecosystems extend beyond technology to include supportive regulatory environments and skills development. Streamlined permitting processes, quality standards, and training programs build capacities that sustain renewable energy growth. By integrating technology adoption with comprehensive innovation policies, emerging economies can expand renewable energy penetration, reduce dependence on fossil fuels, and stimulate green economic development [29].

3.2 Energy Efficiency and Demand-Side Management

Energy efficiency is a critical and often cost-effective pathway to reducing emissions and optimizing resource use. It involves both behavioral and technological strategies aimed at minimizing energy consumption without compromising service quality. Technological measures include upgrading appliances, improving building insulation, and deploying efficient lighting and industrial processes. Behavioral approaches encompass awareness campaigns, consumer education, and incentives to encourage energy-saving practices among households, businesses, and public institutions [30, 31].

Demand-side management complements efficiency efforts by actively shaping consumer energy use patterns to reduce peak loads and balance supply-demand dynamics. Tools such as smart meters, time-of-use tariffs, and demand response programs empower consumers to adjust consumption based on price signals or grid needs. These approaches reduce system stress, defer costly infrastructure expansions, and integrate renewable energy more effectively [32, 33].

Policy measures that promote energy efficiency and demandside management include mandatory energy performance standards, labeling schemes, and fiscal incentives. Regulations can drive market transformation by phasing out inefficient products and setting minimum efficiency thresholds. Financial incentives, such as rebates and lowinterest loans, lower adoption costs. Combining these policies with stakeholder engagement and capacity-building enhances uptake and long-term behavioral change. Together, these strategies form an essential part of sustainable energy transitions [34].

3.3 Financing Mechanisms and Investment Mobilization

Mobilizing adequate financing is one of the most significant challenges in advancing sustainable energy transitions in emerging economies. Public sector financing through budget allocations, concessional loans, and grants is essential to catalyze initial investments, especially in early-stage projects and infrastructure development. Governments also play a critical role in creating enabling environments by establishing clear regulatory frameworks, reducing policy risks, and offering guarantees that attract private sector participatio [35, 36]

Private sector financing is increasingly vital, driven by growing investor interest in green technologies and sustainability-linked investments. Mechanisms such as green bonds, climate funds, and public-private partnerships channel capital toward renewable energy, energy efficiency, and grid modernization projects. However, risks related to currency fluctuations, political instability, and regulatory uncertainty often deter investors. Addressing these risks through risk mitigation instruments and insurance products enhances investor confidence [37].

In addition, innovative financing approaches, including crowdfunding and impact investing, are emerging as complementary tools to broaden access to capital. Strengthening financial institutions' capacity to evaluate and manage sustainable energy projects is equally important [38]. By combining diverse financing sources with robust risk management and supportive policies, emerging economies can scale up investments necessary for accelerating their sustainable energy transitions [39].

4. Implementation Gaps and Challenges 4.1 Institutional and Regulatory Barriers

One of the primary obstacles to sustainable energy transitions in emerging economies is institutional and regulatory fragmentation. Policy incoherence often arises from overlapping responsibilities among different government agencies, inconsistent policy objectives, and a lack of coordination across sectors. This fragmentation leads to inefficiencies in policy enforcement and creates uncertainty investors and developers, hindering project implementation. Additionally, frequent policy reversals or delays in updating regulations undermine the credibility and predictability needed to foster long-term commitments [22, 40]. Capacity constraints compound these institutional challenges. Many emerging economies suffer from shortages of technical expertise, limited human resources, and inadequate institutional frameworks to effectively design, implement, and monitor energy policies. This gap weakens regulatory enforcement and reduces the ability to respond adaptively to emerging challenges. Training and capacitybuilding programs for government officials, regulators, and local stakeholders are often insufficient or inconsistently applied [41].

Addressing these barriers requires integrated institutional reforms that clarify mandates, promote inter-agency coordination, and strengthen regulatory bodies. Developing clear, transparent, and stable policy environments enhances investor confidence and streamlines project approvals. Building institutional capacities through targeted training, technical assistance, and knowledge exchange is equally crucial to support effective governance and enforcement mechanisms necessary for successful energy transitions.

4.2 Socioeconomic and Equity Considerations

Socioeconomic disparities present significant challenges to the equitable implementation of sustainable energy policies. Access disparities between urban and rural populations, wealthier and poorer households, and different social groups exacerbate existing inequalities. Rural and marginalized communities often lack reliable energy access, limiting their ability to benefit from new technologies or energy services. These gaps not only impede social inclusion but also restrict the overall impact of energy transitions on poverty alleviation and development.

Social acceptance is another critical factor influencing the success of energy projects. Resistance from communities due to concerns about land use, cultural impacts, or perceived inequities can delay or derail implementation. Lack of inclusive engagement processes that genuinely involve affected populations further undermines legitimacy and trust. Effective communication and participatory approaches are necessary to build broad-based support and address social concerns proactively.

Targeted policies are essential to address these equity considerations. Social protection measures, such as subsidies or tailored financing options, can enhance affordability for vulnerable groups. Additionally, community-based renewable energy projects and capacity-building initiatives empower marginalized populations to participate actively in the transition. Prioritizing equity ensures that sustainable energy transitions contribute to broader social goals and do not deepen existing inequalities [42, 43].

4.3 Technical and Infrastructure Constraints

Technical and infrastructural limitations are persistent barriers to scaling sustainable energy in emerging economies. Many existing electricity grids suffer from low capacity, high losses, and inadequate coverage, particularly in rural and remote areas. This limits the ability to integrate variable renewable energy sources such as solar and wind, which require grid flexibility, storage solutions, and smart management systems to maintain reliability. Infrastructure development often lags behind policy ambitions, creating a gap between targets and actual implementation [15].

Technology transfer and local adaptation present additional challenges. Emerging economies may lack access to advanced technologies or face high costs and intellectual property restrictions. Moreover, imported technologies might not be suited to local conditions without appropriate customization, reducing effectiveness and sustainability. Developing local manufacturing and technical expertise is therefore vital to enhance technology absorption and foster innovation ecosystems. Maintenance and operational challenges further affect the longevity and efficiency of energy infrastructure. Limited technical skills, supply chain issues, and funding shortfalls can lead to equipment failures, service interruptions, and underperformance. Strengthening technical training, establishing reliable maintenance frameworks, and ensuring sustainable financing for operations are essential to overcome these obstacles. Addressing technical and infrastructure holistically enables emerging economies to realize the full potential of their sustainable energy transitions [44].

5. Conclusion and Recommendations

5.1 Summary of Key Insights

This paper has presented a comprehensive exploration of sustainable energy transitions in emerging economies, integrating theoretical foundations with practical policy frameworks. The analysis underscored the complex, multidimensional nature of energy transitions, highlighting the interplay between technological innovation, institutional arrangements, and socioeconomic factors. By examining energy transition theories, policy instruments, and governance structures, the paper provided a robust conceptual basis to understand the challenges and opportunities specific to emerging economies.

Practical contributions include identifying key policy pathways such as renewable energy integration, energy efficiency, and diversified financing mechanisms. The study also illuminated critical implementation gaps, including institutional fragmentation, socioeconomic inequities, and technical constraints, which often undermine policy effectiveness. Addressing these barriers is essential for translating ambitious sustainability goals into tangible outcomes. Collectively, the insights contribute to a nuanced understanding that sustainable energy transitions require integrated, adaptive approaches tailored to contextual realities.

The framework proposed offers a strategic roadmap for policymakers and stakeholders to navigate the complexities of energy transformation, emphasizing inclusivity, innovation, and resilience. It highlights the importance of coordinated actions across multiple levels of governance and sectors, supported by robust monitoring and feedback mechanisms. This holistic perspective aims to bridge theory and practice, advancing sustainable energy futures in emerging economies.

5.2 Strategic Implications for Emerging Economies

The findings carry significant strategic implications for emerging economies striving to achieve sustainable energy transitions. Integrated policymaking that harmonizes regulatory, financial, and technical dimensions is vital to overcome sectoral silos and ensure coherent policy implementation. Adaptive governance mechanisms that incorporate continuous learning and stakeholder engagement can enhance policy responsiveness to evolving challenges and opportunities.

Sustainable energy transitions in these contexts also require balancing development imperatives with environmental goals. Inclusive approaches that prioritize equitable access and social acceptance are fundamental to achieving just transitions that benefit all segments of society. Furthermore, leveraging regional cooperation and knowledge-sharing can amplify impacts and optimize resource use across borders.

amplify impacts and optimize resource use across borders. Strategically, emerging economies must invest in institutional capacity-building and infrastructure modernization to support the deployment of innovative technologies and resilient energy systems. Establishing stable, transparent policy environments fosters investor confidence, attracting the diverse financing necessary to scale sustainable solutions. These strategic shifts collectively position emerging economies to contribute meaningfully to global climate goals while advancing national development priorities.

5.3 Recommendations

To accelerate sustainable energy transitions, policymakers should focus on streamlining institutional frameworks, clarifying mandates, and enhancing inter-agency coordination to reduce regulatory fragmentation. Strengthening technical and administrative capacities through training and knowledge exchange is critical to improving policy design and enforcement. Incorporating participatory mechanisms ensures that vulnerable groups are included in decision-making, thereby fostering legitimacy and social acceptance.

Financially, governments must develop innovative financing platforms that blend public and private capital, while introducing risk mitigation tools to attract investment. Supporting local innovation and technology adaptation enhances sustainability and reduces reliance on imports. Policymakers should also promote demand-side management and energy efficiency through targeted incentives and robust standards.

Stakeholders, including civil society, the private sector, and international partners, play crucial roles in advocacy, capacity-building, and resource mobilization. Collaborative partnerships that align goals and share expertise can bridge gaps and drive coherent action. Monitoring and evaluation systems should be institutionalized to facilitate evidence-based adjustments and improve accountability. By adopting these integrated, inclusive, and adaptive strategies, emerging economies can effectively bridge implementation gaps and realize sustainable energy transitions.

6. References

- 1. Araújo K. The emerging field of energy transitions: Progress, challenges, and opportunities. Energy Research & Social Science. 2014;1:112-121.
- 2. Cantarero MMV. Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. Energy Research & Social Science. 2020;70:101716.
- 3. Mathews JA. The renewable energies technology surge: A new techno-economic paradigm in the making? Futures. 2013;46:10-22.
- 4. Pfenninger S, Hawkes A, Keirstead J. Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews. 2014;33:74-86.
- 5. Ghisellini P, Cialani C, Ulgiati S. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production. 2016;114:11-32.
- 6. Manfren M, Caputo P, Costa G. Paradigm shift in urban energy systems through distributed generation: Methods and models. Applied Energy. 2011;88(4):1032-1048.
- 7. Rauch E, Dallasega P, Matt DT. Sustainable production in emerging markets through Distributed Manufacturing Systems (DMS). Journal of Cleaner Production. 2016;135:127-138.
- 8. Westley F, Olsson P, Folke C, Homer-Dixon T, Vredenburg H, Loorbach D, *et al.* Tipping toward sustainability: emerging pathways of transformation. Ambio. 2011;40(7):762-780.
- 9. Göpel M. The great mindshift: How a new economic paradigm and sustainability transformations go hand in hand. Cham: Springer Nature; 2016.
- 10. Sovacool BK, Martiskainen M, Hook A, Baker L.

- Decarbonization and its discontents: a critical energy justice perspective on four low-carbon transitions. Climatic Change. 2019;155(4):581-619.
- 11. Blazquez J, Fuentes R, Manzano B. On some economic principles of the energy transition. Energy Policy. 2020;147:111807.
- 12. Buschle D, Westphal K. A challenge to governance in the EU: Decarbonization and energy security. European Energy & Climate Journal. 2019;8(3-4):53-64.
- 13. Fay M, Hallegatte S, Vogt-Schilb A, Rozenberg J, Narloch U, Kerr T. Decarbonizing development: Three steps to a zero-carbon future. Washington, DC: World Bank Publications; 2015.
- 14. Gambhir A, Green F, Pearson PJ. Towards a just and equitable low-carbon energy transition. Grantham Institute Briefing Paper. 2018;26.
- 15. Johnson OW, Han JY, Knight A, Mortensen S, Aung MT, Boyland M, *et al.* Intersectionality and energy transitions: A review of gender, social equity and low-carbon energy. Energy Research & Social Science. 2020;70:101774.
- 16. Månberger A. Deep Decarbonization and Energy Security for Low-Carbon Societies. 2018.
- 17. Fraundorfer M, Rabitz F. The Brazilian renewable energy policy framework: Instrument design and coherence. Climate Policy. 2020;20(5):652-660.
- 18. Daszkiewicz K. Policy and regulation of energy transition. In: The geopolitics of the global energy transition. Cham: Springer; 2020. p. 203-226.
- 19. Von Lüpke H, Well M. Analyzing climate and energy policy integration: the case of the Mexican energy transition. Climate Policy. 2020;20(7):832-845.
- 20. Sovacool BK, Turnheim B, Martiskainen M, Brown D, Kivimaa P. Guides or gatekeepers? Incumbent-oriented transition intermediaries in a low-carbon era. Energy Research & Social Science. 2020;66:101490.
- 21. Florini A, Sovacool BK. Bridging the gaps in global energy governance. Global Governance. 2011;17(1):57-74.
- 22. Marquis C, Raynard M. Institutional strategies in emerging markets. Academy of Management Annals. 2015;9(1):291-335.
- 23. Cumming GS, Epstein G. Landscape sustainability and the landscape ecology of institutions. Landscape Ecology. 2020;35(12):2613-2628.
- 24. Leal-Arcas R, Filis A. The fragmented governance of the global energy economy: a legal-institutional analysis. Journal of World Energy Law and Business. 2013;6(4):348-405.
- 25. Sovacool BK. An international comparison of four polycentric approaches to climate and energy governance. Energy Policy. 2011;39(6):3832-3844.
- 26. Weitz N, Strambo C, Kemp-Benedict E, Nilsson M. Closing the governance gaps in the water-energy-food nexus: Insights from integrative governance. Global Environmental Change. 2017;45:165-173.
- 27. MacIntyre A. The power of institutions: Political architecture and governance. Ithaca: Cornell University Press; 2018.
- 28. Breukers S, Wolsink M. Wind power implementation in changing institutional landscapes: An international comparison. Energy Policy. 2007;35(5):2737-2750.
- 29. Clark R, Reed J, Sunderland T. Bridging funding gaps for climate and sustainable development: Pitfalls,

- progress and potential of private finance. Land Use Policy. 2018;71:335-346.
- 30. Lovins AB. How big is the energy efficiency resource? Environmental Research Letters. 2018;13(9):090401.
- 31. Yeatts DE, Auden D, Cooksey C, Chen C-F. A systematic review of strategies for overcoming the barriers to energy-efficient technologies in buildings. Energy Research & Social Science. 2017;32:76-85.
- 32. Gerarden TD, Newell RG, Stavins RN. Assessing the energy-efficiency gap. Journal of Economic Literature. 2017;55(4):1486-1525.
- 33. Reddy BS. Barriers and drivers to energy efficiency—A new taxonomical approach. Energy Conversion and Management. 2013;74:403-416.
- 34. Pérez-Lombard L, Ortiz J, Velázquez D. Revisiting energy efficiency fundamentals. Energy Efficiency. 2013;6(2):239-254.
- 35. Kamal A, Al-Ghamdi SG, Koc M. Revaluing the costs and benefits of energy efficiency: A systematic review. Energy Research & Social Science. 2019;54:68-84.
- 36. Meng Y, Yang Y, Chung H, Lee P-H, Shao C. Enhancing sustainability and energy efficiency in smart factories: A review. Sustainability. 2018;10(12):4779.
- 37. Hesselink LX, Chappin EJ. Adoption of energy efficient technologies by households—Barriers, policies and agent-based modelling studies. Renewable and Sustainable Energy Reviews. 2019;99:29-41.
- 38. Ekins P, Domenech T, Drummond P, Bleischwitz R, Hughes N, Lotti L. Resource efficiency: Potential and economic implications. 2016.
- 39. Mundaca L, Neij L, Worrell E, McNeil M. Evaluating energy efficiency policies with energy-economy models. Annual Review of Environment and Resources. 2010;35(1):305-344.
- 40. Ebohon OJ, Field B, Ford R. Institutional deficiencies and capacity building constraints: the dilemma for environmentally sustainable development in Africa. The International Journal of Sustainable Development & World Ecology. 1997;4(3):204-213.
- 41. Khoury TA, Prasad A. Entrepreneurship amid concurrent institutional constraints in less developed countries. Business & Society. 2016;55(7):934-969.
- 42. Carley S, Konisky DM. The justice and equity implications of the clean energy transition. Nature Energy. 2020;5(8):569-577.
- 43. Barnes DF, Floor WM. Rural energy in developing countries: a challenge for economic development. Annual Review of Energy and the Environment. 1996;21(1):497-530.
- 44. Kaygusuz K. Energy services and energy poverty for sustainable rural development. Renewable and Sustainable Energy Reviews. 2011;15(2):936-947.