

AI-Powered Leak Detection and Alerting Architecture in Continuous Monitoring Systems

Semiu Temidayo Fasasi ^{1*}, Oluwapelumi Joseph Adebowale ², Abdulmaliq Abdulsalam ³, Zamathula Queen Sikhakhane Nwokediegwu ⁴

- ¹ Independent Researcher, Nigeria
- ² Independent Researcher, USA
- ³ Independent Researcher, Durban, South Africa
- ⁴ Department of Chemical and Petroleum Engineering, University of Lagos, Nigeria
- * Corresponding Author: Semiu Temidayo Fasasi

Article Info

P-ISSN: 3051-3502 **E-ISSN:** 3051-3510

Volume: 02 Issue: 01

January - June 2021 Received: 03-12-2020 Accepted: 07-01-2021 Published: 04-02-2021

Page No: 33-39

Abstract

Leak detection in industrial environments is critical for ensuring safety, environmental protection, and operational efficiency. This paper presents a comprehensive architectural framework for AI-powered leak detection and alerting within continuous monitoring systems. By integrating diverse sensor technologies with advanced machine learning algorithms, the proposed design enhances the accuracy and responsiveness of leak identification while addressing challenges such as data heterogeneity, real-time processing, and system scalability. Key components, including edge computing units, centralized analytics, and intelligent alert mechanisms, work synergistically to enable continuous, autonomous monitoring with timely, actionable alerts. The architecture's modular and scalable nature supports adaptability across various industrial contexts, promoting resilience and operational reliability. This work further highlights the implications of adopting AI-driven monitoring systems for industry safety and environmental compliance, emphasizing improved risk management and proactive leak mitigation. Finally, the paper outlines future directions, including advancements in explainable AI, sensor innovation, and system interoperability, which are essential to enhancing the effectiveness and adoption of continuous leak detection technologies. Overall, this framework demonstrates how intelligent monitoring architectures can transform traditional leak detection approaches, fostering safer and more sustainable industrial operations.

DOI: https://doi.org/10.54660/IJMER.2021.2.1.33-39

Keywords: Leak Detection, Continuous Monitoring, Artificial Intelligence, Machine Learning, Industrial Safety, Real-Time Alerting

1. Introduction

1.1 Background

The detection of leaks in industrial environments, particularly within sectors such as oil and gas, chemical manufacturing, and water distribution, is critical to ensuring operational safety and environmental protection (Aalsalem *et al.*, 2018, reza Akhondi *et al.*, 2010). Leakages not only pose substantial risks to human health and safety but also lead to significant economic losses and environmental degradation (Scott and Barrufet, 2003, reza Akhondi *et al.*, 2010). Traditional leak detection methods often rely on periodic manual inspections and threshold-based alarms, which can be slow to identify leaks, resulting in prolonged exposure to hazardous conditions. In this context, continuous monitoring systems have emerged as vital tools, enabling real-time surveillance and timely response to leak events (Adegboye *et al.*, 2019, Aalsalem *et al.*, 2018). Advancements in artificial intelligence (AI) have provided new opportunities to enhance leak detection capabilities (Tylman *et al.*, 2010).

AI algorithms, especially those based on machine learning, are capable of processing vast streams of sensor data to identify subtle patterns and anomalies that would be difficult or impossible to detect through conventional methods (Wanasinghe *et al.*, 2020, Elijah *et al.*, 2021). By integrating AI with continuous monitoring systems, it becomes possible to improve the sensitivity and specificity of leak detection, reduce false alarms, and optimize maintenance interventions. This integration has the potential to transform how industries manage leak risks, shifting from reactive to proactive approaches (Popoola *et al.*, 2013).

The motivation for this work stems from the increasing demand for intelligent, automated systems that not only detect leaks promptly but also provide actionable alerts to decision-makers. In an era where regulatory requirements are becoming more stringent and the social expectation for environmental stewardship grows, developing an AI-powered architecture that can operate continuously and reliably is imperative. This paper addresses the design and conceptualization of such a system, focusing on the architectural components and their interactions to support robust leak detection and alerting (Khan *et al.*, 2016, Kong and Ohadi, 2010).

1.2 Challenges in Leak Detection and Monitoring

Despite significant technological advancements, leak detection remains a challenging problem due to the complexity of industrial environments and the diverse nature of leak signatures. One primary challenge is the variability in leak characteristics, such as size, location, and emission type, which can cause sensor readings to fluctuate unpredictably. Environmental factors, including temperature, humidity, and background noise, further complicate the identification of genuine leak events, often resulting in false positives or missed detections (Zaman *et al.*, 2020, Adegboye *et al.*, 2019).

Another major challenge lies in the integration and processing of heterogeneous sensor data. Continuous monitoring systems deploy multiple types of sensors, such as acoustic, infrared, and gas concentration detectors, each producing data with different formats, frequencies, and reliability levels. Fusing this diverse data into a coherent input for AI models requires sophisticated preprocessing and feature extraction techniques. Moreover, real-time processing constraints necessitate efficient algorithms that can quickly analyze data streams without compromising accuracy (Chan *et al.*, 2018, Moubayed *et al.*, 2021).

Operational constraints also impact system performance. These include limited computational resources at edge devices, communication bandwidth restrictions, and the need for system scalability to cover large industrial sites (Capra *et al.*, 2019). Furthermore, alerting mechanisms must balance sensitivity with specificity to avoid alarm fatigue among operators, which can reduce overall system effectiveness. Designing architectures that address these multifaceted challenges is critical to deploying effective AI-powered leak detection systems (Yang *et al.*, 2019, Maheshwari *et al.*, 2018).

1.3 Objectives

This paper aims to present a comprehensive architectural framework for AI-powered leak detection and alerting within continuous monitoring systems. The primary objective is to delineate the core components and their functional

interactions that enable real-time leak identification, data processing, and intelligent alert generation. By focusing on system design rather than specific algorithms or case studies, the work provides a modular and adaptable architecture suitable for various industrial contexts.

A key contribution is the integration of AI techniques for anomaly detection with sensor data management and communication protocols to ensure reliable and timely alerts. The proposed architecture emphasizes scalability and fault tolerance, addressing practical considerations such as data heterogeneity, real-time processing, and user interface requirements. This holistic approach bridges the gap between AI capabilities and operational needs, fostering a robust system capable of continuous, autonomous monitoring.

Additionally, the paper discusses the implications of such architectures for industrial safety and environmental protection. It highlights how AI-driven systems can reduce leak response times, minimize false alarms, and enhance overall system reliability. By outlining future directions, including improvements in AI models and system interoperability, the paper sets a foundation for ongoing innovation in intelligent leak detection technologies.

2. Overview of Continuous Monitoring Systems2.1 Fundamentals of Leak Detection Technologies

Leak detection technologies have evolved considerably, relying on various physical and chemical sensing principles to identify the presence of undesired emissions. Common sensor types include acoustic sensors that detect sound signatures generated by leaks, infrared sensors that identify gas plumes through spectral analysis, and chemical sensors that measure gas concentrations in the environment. Each technology offers unique strengths in terms of sensitivity, response time, and suitability for different types of leaks or industrial environments (Adeleke *et al.*, 2021, ADEWOYIN *et al.*, 2021).

The core principle behind leak detection is the recognition of anomalies or deviations from baseline sensor readings that signify a leak event. This often involves setting thresholds or using statistical models to distinguish between normal background fluctuations and actual leaks (Waarum *et al.*, 2017, Adegboye *et al.*, 2019). Recent advances have incorporated machine learning algorithms to enhance this detection by learning complex patterns in sensor data that traditional thresholding methods might miss, enabling earlier and more reliable identification of leaks (EYINADE *et al.*, 2020, Odedeyi *et al.*, 2020, OGUNNOWO *et al.*, 2020).

Additionally, effective leak detection requires careful sensor placement and calibration to ensure coverage of critical points while minimizing false positives from environmental noise or operational activities. Integration of multiple sensor modalities often improves detection accuracy by providing complementary information. However, this diversity also increases the complexity of data acquisition and interpretation, underscoring the need for sophisticated data fusion and processing techniques in continuous monitoring systems (Oluoha *et al.*, 2021, ONIFADE *et al.*, 2021).

2.2 Role of Continuous Monitoring in Industrial Safety

Continuous monitoring systems represent a paradigm shift in industrial safety management by enabling persistent surveillance of critical assets. Unlike periodic inspections, these systems provide uninterrupted data streams that can detect leaks as they occur, allowing for immediate

intervention. This real-time capability is vital in preventing accidents, reducing environmental harm, and ensuring regulatory compliance (Adewoyin *et al.*, 2020b, ADEWOYIN *et al.*, 2020a).

In safety-critical industries, the early detection of leaks not only protects personnel and the environment but also mitigates financial risks associated with lost product, equipment damage, and potential fines. Continuous monitoring supports proactive maintenance strategies by providing detailed insights into leak dynamics and system health, facilitating timely repairs before incidents escalate (Okuh *et al.*).

Furthermore, continuous systems contribute to comprehensive risk management frameworks by generating rich datasets that inform safety audits, incident investigations, and predictive analytics (Meribout, 2021). Their deployment aligns with evolving regulatory landscapes that increasingly emphasize continuous environmental monitoring and automated reporting. Consequently, continuous monitoring forms a foundational element of modern industrial safety architectures (Gbabo *et al.*, Ogunnowo).

2.3 Limitations of Traditional Systems

Despite their widespread use, traditional leak detection systems exhibit several limitations that constrain their effectiveness. Many rely on manual inspections or scheduled measurements, which create temporal gaps during which leaks may go undetected. This reactive approach often leads to delayed responses and increased severity of incidents (Gbabo *et al.*).

Traditional threshold-based alarms are prone to generating false positives due to environmental noise or operational variability, causing alarm fatigue among operators. This can result in desensitization to alerts and decreased vigilance, ultimately undermining system reliability and safety (Nizami, 2016). Additionally, such systems may lack the intelligence to differentiate between benign fluctuations and true leak events, limiting their accuracy (Milo, 2013, Pyke, 2012).

Another significant limitation lies in the inflexibility and lack of scalability of conventional systems. They may struggle to integrate heterogeneous sensor data or adapt to complex industrial environments with evolving risk profiles. Moreover, traditional systems often do not support automated alerting or advanced data analytics, restricting their utility in modern safety management where rapid, data-driven decision-making is crucial (Bai, 2016, Shanmugham, 2018).

3. AI Techniques in Leak Detection

3.1 Machine Learning Algorithms for Anomaly Detection

Machine learning algorithms have become instrumental in advancing leak detection by enabling systems to identify complex, non-linear patterns in sensor data indicative of leaks. Supervised learning techniques, such as support vector machines and neural networks, are commonly used to classify sensor readings based on labeled datasets containing examples of leak and non-leak conditions. These methods can improve detection accuracy by learning from historical data and adapting to varying operational contexts (Gupta, 2017, Shakmak, 2016).

Unsupervised learning approaches, including clustering and anomaly detection models like autoencoders, are also valuable when labeled data is scarce or unavailable. These models identify deviations from normal behavior without prior knowledge of leak patterns, making them well-suited for detecting novel or evolving leak signatures. Such flexibility is critical in industrial environments where leaks can manifest in unpredictable ways (Appadoo, 2021).

Moreover, hybrid models that combine supervised and unsupervised methods enhance robustness by leveraging strengths from both approaches. By continuously updating their understanding through online learning, these algorithms can maintain performance despite changing environmental conditions or sensor drift. Overall, machine learning significantly elevates the sensitivity and reliability of leak detection systems beyond traditional rule-based methods (Ma *et al.*, 2021, Romano, 2019).

3.2 Sensor Data Processing and Feature Extraction

Effective AI-powered leak detection relies on thorough sensor data processing to extract meaningful features that capture the characteristics of leaks. Raw sensor signals often contain noise and redundant information, necessitating preprocessing steps such as filtering, normalization, and signal transformation to enhance data quality. These steps are essential for improving the performance and stability of downstream algorithms (Abedi *et al.*, 2021).

Feature extraction involves selecting or engineering descriptive attributes from processed data that highlight relevant patterns. Common features include statistical metrics like mean, variance, and kurtosis, as well as frequency-domain characteristics derived from Fourier or wavelet transforms. Time-series analysis techniques are frequently employed to capture temporal dynamics crucial for distinguishing transient leak events from background fluctuations (Wu *et al.*, 2021).

Automated feature selection methods can identify the most infor mative attributes, reducing dimensionality and computational burden. This improves model efficiency and generalization capability. Together, robust data processing and feature extraction form the foundation for reliable anomaly detection, enabling AI systems to discern subtle and complex leak signatures in continuous sensor streams.

3.3 Real-Time Decision-Making and Alerting Mechanisms

Real-time decision-making is a critical component of AI-powered leak detection systems, where timely identification and response to leaks can prevent accidents and reduce environmental impact. This requires AI models to process incoming sensor data streams continuously and generate alerts with minimal latency. Efficient algorithms and optimized data pipelines are essential to meet these real-time constraints.

Once an anomaly is detected, alerting mechanisms must determine the severity and credibility of the event before notifying operators. This involves applying decision rules or confidence thresholds to filter out false alarms and prioritize critical leaks. Advanced systems incorporate contextual information, such as historical data and operational status, to refine alert accuracy and relevance.

Additionally, alerting interfaces are designed to present actionable information clearly and promptly to human operators or automated response systems. This may include visual dashboards, mobile notifications, or integration with supervisory control systems. By combining real-time AI inference with intelligent alert management, these systems enhance situational awareness and enable rapid, informed

decision-making in leak response.

4. Architectural Design of AI-Powered Leak Detection Systems

4.1 System Components and Integration

An AI-powered leak detection system typically consists of several interrelated components that work together to ensure accurate detection and timely alerts. The core components include a sensor network for continuous data acquisition, edge computing units that preprocess and analyze data locally, a central processing hub for advanced analytics, and an alerting module that communicates findings to operators. Seamless integration of these components is essential for effective system performance (Kaul and Khurana, 2021, Al-Dulaimi, 2021).

The sensor network forms the system's foundation by continuously capturing environmental and operational parameters related to leak occurrences. These sensors can be deployed strategically across critical points to ensure comprehensive coverage. Edge computing devices perform initial data filtering and feature extraction, reducing the volume of data transmitted to the central hub and enabling faster preliminary leak identification (Phoha et al., 2007). Integration is achieved through standardized interfaces and middleware platforms that facilitate interoperability between heterogeneous devices and software modules. This modular approach allows for flexibility in scaling the system, incorporating new sensor types, or updating AI models. Moreover, it supports real-time data exchange and synchronization, enabling the system to operate cohesively across distributed locations (Ali and Choi, 2019, Owojaiye and Sun. 2013).

4.2 Data Flow and Communication Protocols

Efficient data flow management is crucial to the responsiveness and reliability of leak detection systems (Rullo *et al.*, 2019). Sensor data typically flows from edge devices to central servers, passing through several stages including preprocessing, feature extraction, anomaly detection, and alert generation. Optimizing this pipeline ensures low latency and high throughput, which are vital for timely leak response (Rafique *et al.*, 2020, Moubayed *et al.*, 2021).

Communication protocols used in the system must support reliable and secure data transmission, often under constrained network conditions. Common protocols include MQTT and CoAP, which are lightweight and designed for resource-limited devices. These protocols enable asynchronous, event-driven messaging that minimizes bandwidth usage while maintaining data integrity (Peltola, 2015).

Additionally, the architecture incorporates data buffering and fault-tolerance mechanisms to handle network disruptions and prevent data loss. Encryption and authentication protocols protect sensitive information from unauthorized access, ensuring compliance with security standards. Together, these elements establish a robust communication framework that sustains continuous monitoring and effective alerting (Wong and McCann, 2021).

4.3 Scalability and Reliability Considerations

Scalability is a fundamental design criterion for leak detection systems, as industrial sites can vary greatly in size and complexity. The architecture must support the addition of new sensors and processing nodes without degrading performance or requiring extensive reconfiguration. Cloud computing and distributed processing frameworks often facilitate this by providing elastic resource allocation (Gungor and Hancke, 2009).

Reliability is equally critical to ensure uninterrupted monitoring and accurate leak detection. Redundancy is implemented at multiple levels, including sensor duplication, backup communication channels, and failover processing units. These measures mitigate risks posed by hardware failures, network outages, or software errors, maintaining system availability (Mahmood *et al.*, 2015, Islam *et al.*, 2012).

Furthermore, continuous system health monitoring and self-diagnostic features enable early detection of faults within the architecture. Combined with periodic software updates and model retraining, these practices enhance long-term robustness. Ultimately, designing for scalability and reliability ensures that AI-powered leak detection systems remain effective and resilient in dynamic industrial environments (Aalsalem *et al.*, 2018, Almazyad *et al.*, 2014).

5. Conclusion

This paper has presented a comprehensive architectural framework for AI-powered leak detection and alerting within continuous monitoring systems. Central to this framework is the integration of diverse sensor technologies with advanced AI algorithms that enhance leak identification accuracy and responsiveness. By leveraging machine learning for anomaly detection, the system effectively processes complex, real-time data streams to distinguish leak events from normal environmental variations.

Key components such as edge computing, centralized analytics, and intelligent alerting mechanisms work synergistically to maintain high performance and reliability. The architecture addresses fundamental challenges, including data heterogeneity, real-time decision-making, communication constraints, thus enabling scalable deployment in diverse industrial settings. Through modular integration, the system supports ongoing adaptability and resilience, which are critical factors in operational environments with evolving risks. Overall, the design highlights how AI can transform traditional leak detection methods by improving sensitivity, reducing false alarms, and enabling proactive safety management. These insights demonstrate the potential for continuous, automated monitoring to significantly enhance leak mitigation efforts across multiple sectors, contributing to safer and more sustainable industrial operations.

The adoption of AI-powered continuous monitoring systems carries substantial implications for industry practices and occupational safety. By facilitating early and accurate leak detection, these systems help prevent hazardous incidents that threaten worker health and environmental integrity. Timely alerts empower maintenance teams to intervene promptly, minimizing the scale and impact of leaks.

Industries that implement such architectures can achieve improved regulatory compliance by meeting increasingly stringent environmental monitoring requirements. The automation of data collection and analysis reduces reliance on manual inspections, lowering operational costs and human error. Moreover, enhanced leak detection capabilities support sustainability goals by mitigating emissions and conserving resources. From a safety perspective, continuous monitoring contributes to risk reduction strategies by providing

comprehensive, real-time situational awareness. This fosters a culture of proactive hazard management and enables better-informed decision-making. Ultimately, the integration of AI within monitoring systems positions industries to advance both operational excellence and corporate responsibility.

Future advancements in AI-enhanced leak detection systems will likely focus on improving model robustness and interpretability. Incorporating explainable AI techniques can help operators understand detection results and build trust in automated alerts. Adaptive learning methods that self-tune to changing operational conditions will enhance long-term system performance.

Emerging sensor technologies, including novel chemical and optical sensors, promise to expand detection capabilities and resolution. Integrating these with AI architectures will further refine the accuracy and speed of leak identification. Moreover, the convergence of AI with Internet of Things (IoT) platforms and edge computing will enable more decentralized and resilient systems. Finally, standardization efforts and interoperability frameworks will facilitate broader adoption across industries by ensuring seamless integration with existing infrastructure. Continued research into privacy, security, and ethical considerations will also be crucial as these intelligent monitoring systems become more pervasive. Together, these future directions herald a new era of intelligent, continuous leak monitoring that advances safety and sustainability.

6. References

- Aalsalem MY, Khan WZ, Gharibi W, Khan MK, Arshad Q. Wireless Sensor Networks in oil and gas industry: Recent advances, taxonomy, requirements, and open challenges. Journal of Network and Computer Applications. 2018;113:87-97.
- 2. Abedi H, Luo S, Mazumdar V, Riad MM, Shaker G. Alpowered in-vehicle passenger monitoring using low-cost mm-wave radar. IEEE Access. 2021;10:18998-19012.
- 3. Adegboye MA, Fung W-K, Karnik A. Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches. Sensors. 2019;19(11):2548.
- 4. Adeleke AK, Igunma TO, Nwokediegwu ZS. Modeling advanced numerical control systems to enhance precision in next-generation coordinate measuring machine. International Journal of Multidisciplinary Research and Growth Evaluation. 2021;2(4):638-649.
- Adewoyin MA, Ogunnowo EO, Fiemotongha JE, Igunma TO, Adeleke AK. Advances in Thermofluid Simulation for Heat Transfer Optimization in Compact Mechanical Devices. [Unpublished]. 2020a.
- Adewoyin MA, Ogunnowo EO, Fiemotongha JE, Igunma TO, Adeleke AK. A Conceptual Framework for Dynamic Mechanical Analysis in High-Performance Material Selection. [Unpublished]. 2020b.
- Adewoyin MA, Ogunnowo EO, Fiemotongha JE, Igunma TO, Adeleke AK. Advances in CFD-Driven Design for Fluid-Particle Separation and Filtration Systems in Engineering Applications. [Unpublished]. 2021.
- 8. Al-Dulaimi JAE. IoT System engineering approach using AI for managing safety products in healthcare and workplaces. [Thesis]. London: Brunel University London; 2021.
- 9. Ali H, Choi J-H. A review of underground pipeline

- leakage and sinkhole monitoring methods based on wireless sensor networking. Sustainability. 2019;11(15):4007.
- Almazyad AS, Seddiq YM, Alotaibi AM, Al-Nasheri AY, Bensaleh MS, Obeid AM, Qasim SM. A proposed scalable design and simulation of wireless sensor network-based long-distance water pipeline leakage monitoring system. Sensors. 2014;14(2):3557-3577.
- 11. Appadoo R. Condition Monitoring and Fault Diagnosis of Fluid Machines in Process Industries. [Thesis]. Huddersfield: University of Huddersfield; 2021.
- 12. Bai Y. SuperAlarm: System and Methods to Predict In-Hospital Patient Deterioration and Alleviate Alarm Fatigue. [Thesis]. Los Angeles: University of California, Los Angeles; 2016.
- 13. Capra M, Peloso R, Masera G, Ruo Roch M, Martina M. Edge computing: A survey on the hardware requirements in the internet of things world. Future Internet. 2019;11(4):100.
- 14. Chan TK, Chin CS, Zhong X. Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection. IEEE Access. 2018;6:78846-78867.
- Elijah O, Ling PA, Rahim SKA, Geok TK, Arsad A, Kadir EA, Abdurrahman M, Junin R, Agi A, Abdulfatah MY. A survey on industry 4.0 for the oil and gas industry: Upstream sector. IEEE Access. 2021;9:144438-144468.
- 16. Eyinade W, Ezeilo OJ, Ogundeji IA. A Treasury Management Model for Predicting Liquidity Risk in Dynamic Emerging Market Energy Sectors. [Unpublished]. 2020.
- 17. Gbabo EY, Okenwa OK, Chima PE. Constructing AI-Enabled Compliance Automation Models for Real-Time Regulatory Reporting in Energy Systems. [Unpublished]. [No date].
- 18. Gbabo EY, Okenwa OK, Chima PE. Integrating CDM Regulations into Role-Based Compliance Models for Energy Infrastructure Projects. [Unpublished]. [No date].
- 19. Gungor VC, Hancke GP. Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Transactions on Industrial Electronics. 2009;56(10):4258-4265.
- 20. Gupta G. Monitoring water distribution network using machine learning. [Unpublished]. 2017.
- 21. Islam K, Shen W, Wang X. Wireless sensor network reliability and security in factory automation: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2012;42(6):1243-1256.
- 22. Kaul D, Khurana R. AI to detect and mitigate security vulnerabilities in APIs: encryption, authentication, and anomaly detection in enterprise-level distributed systems. Eigenpub Review of Science and Technology. 2021;5(1):34-62.
- 23. Khan WZ, Aalsalem MY, Gharibi W, Arshad Q. Oil and Gas monitoring using Wireless Sensor Networks: Requirements, issues and challenges. In: 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). Jakarta: IEEE; 2016:31-35.
- 24. Kong X, Ohadi MM. Applications of micro and nano technologies in the oil and gas industry-an overview of

- the recent progress. In: Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi: Society of Petroleum Engineers; 2010:SPE-138241-MS.
- 25. Ma Q, Tian G, Zeng Y, Li R, Song H, Wang Z, Gao B, Zeng K. Pipeline in-line inspection method, instrumentation and data management. Sensors. 2021;21(11):3862.
- Maheshwari S, Raychaudhuri D, Seskar I, Bronzino F. Scalability and performance evaluation of edge cloud systems for latency constrained applications. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC). Seattle: IEEE: 2018:286-299.
- 27. Mahmood MA, Seah WK, Welch I. Reliability in wireless sensor networks: A survey and challenges ahead. Computer Networks. 2015;79:166-187.
- 28. Meribout M. Gas leak-detection and measurement systems: Prospects and future trends. IEEE Transactions on Instrumentation and Measurement. 2021;70:1-13.
- 29. Milo MW. Anomaly Detection in Heterogeneous Data Environments with Applications to Mechanical Engineering Signals & Systems. [Thesis]. Blacksburg: Virginia Polytechnic Institute and State University; 2013.
- 30. Moubayed A, Sharif M, Luccini M, Primak S, Shami A. Water leak detection survey: Challenges & research opportunities using data fusion & federated learning. IEEE Access. 2021;9:40595-40611.
- 31. Nizami S. Integration of Artifact Detection in Clinical Decision Support Systems. [Thesis]. Ottawa: Carleton University; 2016.
- 32. Odedeyi PB, Abou-El-Hossein K, Oyekunle F, Adeleke AK. Effects of machining parameters on Tool wear progression in End milling of AISI 316. Progress in Canadian Mechanical Engineering. 2020;3:1-10.
- 33. Ogunnowo EO. A Conceptual Framework for Digital Twin Deployment in Real-Time Monitoring of Mechanical Systems. [Unpublished]. [No date].
- 34. Ogunnowo EO, Adewoyin MA, Fiemotongha JE, Igunma TO, Adeleke AK. Systematic Review of Non-Destructive Testing Methods for Predictive Failure Analysis in Mechanical Systems. [Unpublished]. 2020.
- 35. Okuh CO, Nwulu EO, Ogu E, Ifechukwude P, Egbumokei IND, Digitemie WN. Creating a Sustainability-Focused Digital Transformation Model for Improved Environmental and Operational Outcomes in Energy Operations. [Unpublished]. [No date].
- 36. Okuh CO, Nwulu EO, Ogu E, Ifechukwude P, Egbumokei IND, Digitemie WN. An Integrated Lean Six Sigma Model for Cost Optimization in Multinational Energy Operations. [Unpublished]. [No date].
- 37. Oluoha O, Odeshina A, Reis O, Okpeke F, Attipoe V, Orieno O. Development of a Compliance-Driven Identity Governance Model for Enhancing Enterprise Information Security. Iconic Research and Engineering Journals. 2021;4(11):310-324.
- 38. Onifade AY, Ogeawuchi JC, Abayomi A, Agboola O, George O. Advances in Multi-Channel Attribution Modeling for Enhancing Marketing ROI in Emerging Economies. Iconic Research and Engineering Journals. 2021;5(6):360-376.
- 39. Owojaiye G, Sun Y. Focal design issues affecting the deployment of wireless sensor networks for pipeline monitoring. Ad Hoc instructorNetworks. 2013;11(3):1237-1253.

- 40. Peltola M. Implementing reliability and redundancy in a time critical telecommunication system. [Unpublished]. 2015.
- 41. Phoha S, La Porta TF, Griffin C. Sensor network operations. Hoboken: John Wiley & Sons; 2007.
- 42. Popoola LT, Grema AS, Latinwo GK, Gutti B, Balogun AS. Corrosion problems during oil and gas production and its mitigation. International Journal of Industrial Chemistry. 2013;4:35.
- 43. Pyke JB. Analysis of inpatient surveillance data for automated classification of deterioration. [Thesis]. Hanover: Dartmouth College; 2012.
- 44. Rafique W, Qi L, Yaqoob I, Imran M, Rasool RU, Dou W. Complementing IoT services through software defined networking and edge computing: A comprehensive survey. IEEE Communications Surveys & Tutorials. 2020;22(3):1761-1804.
- 45. Reza Akhondi M, Talevski A, Carlsen S, Petersen S. Applications of wireless sensor networks in the oil, gas and resources industries. In: 2010 24th IEEE International Conference on Advanced Information Networking and Applications. Perth: IEEE; 2010:941-948.
- 46. Romano M. Review of techniques for optimal placement of pressure and flow sensors for leak/burst detection and localisation in water distribution systems. In: ICT for Smart Water Systems: Measurements and Data Science. Cham: Springer; 2019:27-63.
- 47. Rullo A, Serra E, Lobo J. Redundancy as a measure of fault-tolerance for the Internet of Things: A review. In: Policy-Based Autonomic Data Governance. Cham: Springer; 2019:202-226.
- 48. Scott SL, Barrufet MA. Worldwide assessment of industry leak detection capabilities for single & multiphase pipelines. College Station: Offshore Technology Research Center; 2003.
- Shakmak BH. Condition monitoring of water leakage detection in buried pipes using sensor fusion systems. [Thesis]. Nottingham: Nottingham Trent University; 2016.
- 50. Shanmugham M. Modification of training methods and alarm thresholds: two ways to reduce potential hazardous clinical alarm related incidents. [Unpublished]. 2018.
- 51. Tylman W, Kolczyński J, Anders GJ. Fully automatic AI-based leak detection system. Energy. 2010;35(9):3838-3848.
- 52. Waarom I-K, Blomberg AE, Eek E, Brown J, Ulfsnes A, Carpenter M, Grimsrud TS, Park J, Cornelissen G, Sparrevik P. CCS leakage detection technology-industry needs, government regulations, and sensor performance. Energy Procedia. 2017;114:3613-3627.
- 53. Wanasinghe TR, Gosine RG, James LA, Mann GK, de Silva O, Warrian PJ. The internet of things in the oil and gas industry: a systematic review. IEEE Internet of Things Journal. 2020;7(9):8654-8673.
- 54. Wong B, McCann JA. Failure detection methods for pipeline networks: From acoustic sensing to cyber-physical systems. Sensors. 2021;21(15):4959.
- 55. Wu Y, Dai H-N, Tang H. Graph neural networks for anomaly detection in industrial Internet of Things. IEEE Internet of Things Journal. 2021;9(12):9214-9231.
- 56. Yang R, Yu FR, Si P, Yang Z, Zhang Y. Integrated blockchain and edge computing systems: A survey, some

- research issues and challenges. IEEE Communications Surveys & Tutorials. 2019;21(2):1508-1532.
- 57. Zaman D, Tiwari MK, Gupta AK, Sen D. A review of leakage detection strategies for pressurised pipeline in steady-state. Engineering Failure Analysis. 2020;109:104264.