

Pharmaceutical Supply Chain Role in Managing Customer Service and Medicine Delivery amid Shortages to USA Customers

Girish Gupta 1*, Meenu Gupta 2

¹⁻² Director Supply Chain & Science Teacher Public High School VA, USA

* Corresponding Author: Girish Gupta

Article Info

P-ISSN: 3051-3502 **E-ISSN:** 3051-3510

Volume: 06 Issue: 01

January – June 2025 Received: 25-12-2024 Accepted: 26-01-2025 Published: 20-02-2025

Page No: 22-35

Abstract

Objective: This study examines the critical role of pharmaceutical supply chains in maintaining customer service excellence and ensuring reliable medicine delivery to USA customers during periods of drug shortages. The research analyzes current supply chain vulnerabilities, customer service challenges, and strategic interventions implemented by industry stakeholders and regulatory agencies.

Methods: A comprehensive analysis was conducted of pharmaceutical supply chain disruptions from 2010-2024, examining manufacturing delays, active pharmaceutical ingredient (API) shortages, logistics bottlenecks, and regulatory challenges. Case studies from major shortage events, including COVID-19 impacts and critical medicine supply gaps, were evaluated alongside policy responses from the FDA, HHS, and BARDA.

Results: The analysis reveals that pharmaceutical supply chain disruptions have reached record levels, with 323 active drug shortages tracked in Q1 2024, surpassing the previous 2014 record. Manufacturing quality issues account for the majority of shortages, while concentration among middlemen and inadequate pricing structures for generic drugs create systematic vulnerabilities. Customer service challenges include delayed deliveries, incomplete prescription fulfillment, and limited communication transparency. Strategic interventions through digital supply chain tools, enhanced forecasting, and public-private partnerships show promise in mitigating customer impact.

Conclusions: Pharmaceutical supply chains require fundamental restructuring to prioritize customer service resilience alongside cost efficiency. Recommendations include implementing advanced demand forecasting systems, establishing redundant manufacturing capabilities, enhancing regulatory coordination, and developing comprehensive customer communication frameworks. Policy initiatives must address market failures that create brittle supply chains while ensuring sustainable access to essential medications for USA customers.

DOI: https://doi.org/10.54660/IJMER.2025.6.1.22-35

Keywords: Pharmaceutical Supply Chain, Drug Shortages, Customer Service, Medicine Delivery, Supply Chain Resilience, Healthcare Logistics, FDA Regulation, Patient Access, Pharmaceutical Manufacturing, Drug Distribution

Introduction

The pharmaceutical supply chain represents one of the most complex and critical components of the United States healthcare system, directly impacting the health outcomes and quality of life for millions of patients nationwide [1]. In recent years, the intersection between supply chain efficiency and customer service delivery has become increasingly strained, with drug shortages reaching unprecedented levels and creating significant challenges for healthcare providers, pharmacies, and patients [2]. The American Society of Health-System Pharmacists (ASHP) reported a record 323 active drug shortages during the first quarter of 2024, marking the highest level of pharmaceutical supply chain disruption in over a decade [3].

The pharmaceutical supply chain encompasses a vast network of manufacturers, distributors, wholesalers, pharmacies, and healthcare providers, each playing a crucial role in ensuring that medications reach patients safely, efficiently, and on time [4].

However, this complex ecosystem has proven increasingly vulnerable to disruptions ranging from manufacturing quality issues and raw material shortages to transportation delays and regulatory bottlenecks ^[5]. These disruptions have profound implications for customer service, often resulting in delayed treatments, incomplete prescription fulfillment, and compromised patient care ^[6].

The impact of supply chain disruptions on customer service extends far beyond simple inconvenience, affecting critical areas such as cancer chemotherapy, emergency medications, and essential chronic disease treatments ^[7]. Patients with lifethreatening conditions may face treatment delays or be forced to switch to less optimal therapeutic alternatives, while healthcare providers struggle to maintain continuity of care ^[8]. The COVID-19 pandemic further highlighted the fragility of pharmaceutical supply chains, exposing vulnerabilities that continue to challenge the industry's ability to serve customers effectively ^[9].

Understanding the role of pharmaceutical supply chains in managing customer service during shortage periods requires examination of multiple interconnected factors, including manufacturing processes, distribution networks, regulatory frameworks, and communication systems [10]. This analysis becomes particularly important as the pharmaceutical industry continues to consolidate, with fewer manufacturers producing essential generic medications and increased reliance on single-source suppliers [11]. The concentration of manufacturing capabilities in specific geographic regions, particularly for active pharmaceutical ingredients, has created additional vulnerabilities that directly impact customer service delivery [12].

The purpose of this comprehensive analysis is to examine how pharmaceutical supply chains can be optimized to maintain customer service excellence during shortage periods, identify key challenges and opportunities for improvement, and propose evidence-based recommendations for enhancing medicine delivery to USA customers. Through detailed examination of supply chain structures, customer service challenges, and policy interventions, this study aims to provide actionable insights for industry stakeholders, policymakers, and healthcare providers working to ensure reliable access to essential medications.

Overview of the US Pharmaceutical Supply Chain

The United States pharmaceutical supply chain represents a multi-trillion-dollar ecosystem characterized by complex interdependencies among manufacturers, wholesalers, distributors, pharmacies, and healthcare providers ^[13]. This intricate network spans global manufacturing facilities, sophisticated distribution centers, and thousands of retail and institutional pharmacies, all working to deliver medications to approximately 330 million American consumers ^[14]. The modern pharmaceutical supply chain has evolved significantly over the past three decades, driven by cost optimization strategies, regulatory requirements, and technological advances that have fundamentally reshaped how medications reach patients ^[15].

At the manufacturing level, the pharmaceutical industry has undergone substantial consolidation, with a relatively small number of companies now producing the majority of essential medications used in the United States [16]. Generic drug manufacturing, in particular, has become highly concentrated, with many commonly prescribed medications produced by fewer than three manufacturers worldwide [17].

This concentration has created significant vulnerabilities in the supply chain, as disruptions at a single manufacturing facility can impact medication availability across the entire country ^[18]. Furthermore, the industry's reliance on overseas manufacturing, particularly in India and China for active pharmaceutical ingredients, has introduced additional complexity and potential points of failure ^[19].

The distribution component of the pharmaceutical supply chain is dominated by three major wholesalers—McKesson Corporation, Cardinal Health, and AmerisourceBergen—which collectively handle approximately 90% of pharmaceutical distribution in the United States [20]. These companies operate vast networks of distribution centers strategically located across the country, utilizing sophisticated inventory management systems and cold-chain capabilities to ensure medication quality and availability [21]. However, this concentration among middlemen has created potential bottlenecks and has been identified as a contributing factor to supply chain vulnerabilities [22].

Pharmacy operations represent the final link in the pharmaceutical supply chain, directly interfacing with customers and serving as the primary touchpoint for medication access ^[23]. The pharmacy landscape includes approximately 67,000 retail pharmacies, 6,000 hospital pharmacies, and numerous specialty pharmacies serving specific patient populations ^[24]. These pharmacies must navigate complex inventory management challenges, balancing the need to maintain adequate stock levels against the risks of medication expiration and financial constraints ^[25]. The rise of pharmacy benefit managers (PBMs) has added another layer of complexity, influencing medication availability and access through formulary decisions and reimbursement policies ^[26].

Technology integration has become increasingly important in pharmaceutical supply chain management, with companies investing in advanced tracking systems, predictive analytics, distribution processes automated implementation of the Drug Supply Chain Security Act (DSCSA) has mandated enhanced serialization and tracking capabilities, creating an electronic, interoperable system designed to improve supply chain visibility and security [28]. However, these technological advances have also introduced new complexities and potential points of failure that must be carefully managed to maintain customer service levels [29]. Regulatory oversight of the pharmaceutical supply chain is primarily managed by the Food and Drug Administration (FDA), which maintains authority over drug manufacturing, quality standards, and supply chain security [30]. The FDA's drug shortage reporting system tracks supply disruptions and coordinates with manufacturers to address shortages, though critics argue that current regulatory frameworks are insufficient to prevent or rapidly resolve supply chain disruptions [31]. Additional regulatory bodies, including the Drug Enforcement Administration (DEA) for controlled substances and state pharmacy boards, add further complexity to supply chain operations [32].

Customer Service Challenges During Medicine Shortages

Medicine shortages create profound customer service challenges that extend throughout the pharmaceutical supply chain, affecting patients, healthcare providers, and pharmacy operations in multifaceted ways [33]. These challenges manifest at every customer touchpoint, from initial prescription processing to final medication delivery, creating

a cascade of service disruptions that can significantly impact patient care and satisfaction [34]. The complexity of managing customer service during shortage periods requires

understanding both the immediate operational challenges and the longer-term implications for patient health outcomes and healthcare system stability [35].

Table 1: Timeline of Major US Medicine Shortages (2010-2024)

Year	Major Shortage Category	Affected Medications	Duration (Months)	Customer Impact	Resolution Strategy
2010-	Injectable	Propofol, Midazolam	8-12	Surgery delays, emergency	Emergency importation,
2011	Anesthetics	Troporor, Micazolam	0 12	department impacts	manufacturing partnerships
2012-	Cancer	Doxorubicin, Cytarabine,	6-18	Treatment delays, protocol	FDA expedited reviews,
2013	Chemotherapy	Methotrexate	0-18	modifications	alternative formulations
2014-	Antibiotics	Piperacillin-tazobactam,	4-10	Hospital-acquired infections,	Manufacturing capacity
2015	Allubioucs	Cefazolin	4-10	treatment complications	expansion, stockpiling initiatives
2016-	Emergency	Epinephrine auto-injectors,	12-24	Life-threatening emergencies,	Alternative suppliers, regulatory
2017	Medications	Naloxone	12-24	school safety concerns	flexibility
2018-	Blood Pressure	Valsartan, Losartan	18-36	Cardiovascular complications,	Quality investigations, supply
2019	Medications	vaisartaii, Losartaii	16-30	medication switches	diversification
2020-	COVID-19 Related	Sedatives, Paralytics,	6-15	ICU capacity limitations, critical	Strategic National Stockpile,
2021	COVID-19 Kelaleu	Antibiotics	0-13	care shortages	international cooperation
2022-	Pediatric	Children's acetaminophen,	4-8	Childhood illness management,	Temporary importation,
2023	Medications	Amoxicillin	4-8	parent anxiety	production prioritization
2024	Canaria Injectables	Chemotherapy agents,	Ongoing	Treatment delays, increased	Manufacturing investments,
2024 Generic Injectable	Generic Injectables	Sterile preparations	Ongoing	healthcare costs	regulatory reforms

The most immediate customer service challenge during medicine shortages is the inability to fulfill prescriptions completely or in a timely manner [36]. Pharmacies frequently encounter situations where prescribed medications are unavailable, requiring extensive coordination with healthcare providers to identify suitable alternatives or modify treatment regimens [37]. This process often involves multiple phone calls, prior authorization requests, and patient counseling sessions that significantly extend wait times and create frustration for customers who expect prompt service [38]. The complexity is further compounded when patients require specific formulations, strengths, or brands that may not have readily available substitutes [39].

Communication challenges represent another critical dimension of customer service disruption during shortages [40]. Patients often receive limited or confusing information about why their medications are unavailable, how long shortages might persist, or what alternatives might be

available ^[41]. Healthcare providers and pharmacists frequently lack real-time visibility into supply chain disruptions, making it difficult to provide accurate information or set appropriate expectations with patients ^[42]. This information gap creates anxiety and uncertainty among customers, particularly those managing chronic conditions or life-threatening illnesses.

The financial implications of medicine shortages create additional customer service burdens, as alternative medications may not be covered by insurance plans or may require higher copayments. Patients may face unexpected costs when switching to brand-name alternatives or may need to purchase medications through cash-pay arrangements. These financial pressures can force patients to delay or forgo essential treatments, creating difficult conversations between healthcare providers and patients about treatment options and affordability.

Table 2: Customer Service Challenges vs. Supply Chain Solutions

Customer Service Challenge Root Cause		Supply Chain Solution	Implementation Timeline	Success Metrics
Prescription fulfillment delays	Manufacturing disruptions	Diversified supplier networks, buffer inventory	12-18 months	Fill rate >95%, wait time <24 hours
Limited medication alternatives	Single-source dependencies	Multiple manufacturer partnerships	18-24 months	Alternative availability >90%
Poor shortage communication	Information system gaps	Real-time tracking platforms	6-12 months	Customer satisfaction >85%
Increased medication costs	Market concentration	Competitive sourcing strategies	24-36 months	Price stability ±10% baseline
Treatment continuity disruptions	Inventory management failures	Predictive analytics, demand forecasting	12-15 months	Continuity rate >98%
Emergency access limitations	Distribution bottlenecks	Emergency distribution protocols	6-9 months	Emergency response <4 hours
Insurance coverage issues	Formulary restrictions	Payer collaboration programs	12-18 months	Coverage approval >92%

Healthcare providers face significant customer service challenges when attempting to maintain continuity of care during shortages. Physicians and nurses must invest

considerable time researching alternative treatments, modifying dosing regimens, or coordinating with specialists to ensure patient safety. Emergency departments and

hospitals experience particular strain when shortages affect critical care medications, forcing clinicians to make difficult decisions about resource allocation and treatment prioritization. These disruptions can delay surgeries, extend hospital stays, and compromise patient outcomes, creating stress for both healthcare teams and patients.

The psychological impact of medicine shortages on customers cannot be understated, particularly for patients managing chronic conditions or cancer treatments. The uncertainty created by shortage announcements can trigger anxiety and depression, while the need to frequently switch medications can undermine patient confidence in their treatment regimens. Parents of children requiring specialized medications face additional stress when pediatric formulations become unavailable, often requiring complex dosing calculations or alternative administration methods.

Specialty pharmacies encounter unique customer service challenges during shortages, as their patients often require complex, high-cost medications with limited alternatives. These pharmacies must maintain extensive patient support programs, including financial assistance, adherence monitoring, and clinical consultation services, while navigating supply disruptions that can affect treatment continuity. The specialized nature of these medications often means that shortages have more severe consequences for patients, requiring intensive case management and coordination with healthcare providers.

Impact of Supply Chain Disruptions on Medicine Delivery

Supply chain disruptions in the pharmaceutical industry create cascading effects that fundamentally alter medicine delivery patterns, timing, and reliability across the United States healthcare system. These disruptions manifest through multiple pathways, each contributing to delays, increased costs, and compromised patient access to essential medications. Understanding the multifaceted impact of these disruptions requires examination of manufacturing delays, active pharmaceutical ingredient shortages, logistics challenges, and regulatory bottlenecks that collectively determine how effectively medications reach patients.

Manufacturing Delays

Manufacturing delays represent the most significant source of supply chain disruption, accounting for approximately 62% of all drug shortages reported to the FDA. These delays stem from various factors including equipment failures, quality control issues, facility contamination, and workforce shortages that can halt production for weeks or months. The complexity of pharmaceutical manufacturing, particularly for sterile injectable products, means that even minor disruptions can have prolonged recovery periods. Manufacturing facilities often operate at near-capacity levels to maintain cost efficiency, leaving little buffer capacity to absorb disruptions or rapidly increase production when demand spikes.

Quality-related manufacturing delays have become increasingly common as regulatory standards have tightened and inspection processes have become more rigorous. FDA warning letters and consent decrees can effectively shut down production lines until compliance issues are resolved, creating sudden and severe supply disruptions. The concentration of manufacturing capabilities among relatively few facilities means that quality issues at a single plant can affect multiple medications and impact thousands of patients. Recent examples include the shutdown of major generic manufacturers due to data integrity concerns and contamination issues, resulting in prolonged shortages of essential medications.

Active Pharmaceutical Ingredient (API) Shortages

The global nature of pharmaceutical supply chains has created significant vulnerabilities related to API availability, with approximately 80% of APIs used in US medications manufactured overseas. Disruptions at API manufacturing facilities in India, China, and other countries can create immediate shortages of finished pharmaceutical products. These disruptions may result from natural disasters, geopolitical tensions, regulatory actions, or quality issues that affect entire classes of medications. The long lead times required for API production and transportation mean that shortages can persist for many months even after the initial disruption is resolved.

Table 3: Risk Categories and Mitigation Strategies for Medicine Delivery

Risk Category Specific Risks		Impact Severity (1- 5)	Mitigation Strategies	Investment Required	Timeline for Implementation
Manufacturing	Equipment failure, contamination, quality issues	5	Redundant capacity, preventive maintenance, quality systems	\$500M-1B annually	12-24 months
API Supply	Overseas dependency, single sourcing, geopolitical risks	4	Supply diversification, domestic production incentives	\$2-5B initial	36-60 months
Logistics	Transportation delays, warehouse disruptions, inventory management 3 Distribution network optimization, technology integration		\$100-500M	18-30 months	
Regulatory	Inspection delays, approval bottlenecks, compliance requirements		Streamlined processes, risk-based approaches, international harmonization	\$50-200M	24-48 months
Demand			Predictive analytics, buffer inventory, demand sharing	\$200-800M	12-36 months
Natural Hurricanes, earthquakes, floods Disasters affecting facilities		4	Geographic diversification, emergency protocols, backup facilities	\$1-3B	24-60 months

The dependency on single-source API suppliers has created particular vulnerabilities for generic medications, where cost pressures have led to consolidation around the lowest-cost

providers. When these suppliers experience disruptions, there are often no alternative sources available in the short term, creating immediate and severe shortages. The complexity of

API manufacturing and the specialized equipment required means that new suppliers cannot easily enter the market to address shortages. Additionally, regulatory requirements for API approval can delay the introduction of alternative suppliers even when they become available.

Logistics and Distribution Issues

Transportation and distribution challenges have become increasingly problematic for medicine delivery, particularly as the pharmaceutical industry has optimized supply chains for cost efficiency rather than resilience. The consolidation of distribution centers and the adoption of just-in-time inventory management practices have reduced buffer stocks and created vulnerabilities to transportation disruptions. Weather events, labor strikes, and infrastructure problems can quickly impact medication availability across broad geographic regions.

Cold chain logistics present particular challenges for temperature-sensitive medications, including insulin, vaccines, and biologics. Disruptions to refrigerated transportation or storage can result in product loss and patient access issues, particularly in rural or remote areas where alternative supply routes may be limited. The increasing importance of specialty medications that require controlled temperature storage has amplified the impact of cold chain disruptions on patient care.

The rise of direct-to-consumer pharmacy services and mailorder prescriptions has created new logistics challenges, particularly during periods of high demand or transportation disruptions. Patients who rely on mail delivery for their medications may face significant delays during shortages or distribution problems, often without readily available alternatives. The COVID-19 pandemic highlighted these vulnerabilities as shipping delays and capacity constraints affected millions of patients relying on home delivery of essential medications.

Regulatory Bottlenecks

Regulatory processes, while essential for ensuring medication safety and efficacy, can contribute to supply chain disruptions and delay medicine delivery during shortage periods. FDA approval processes for new manufacturers, facility changes, or alternative suppliers can take months or years to complete, preventing rapid response to supply disruptions. The requirement for pre-approval inspections of manufacturing facilities can create additional delays, particularly when facilities are located overseas.

Import restrictions and quality holds can suddenly halt the importation of essential medications, creating immediate supply disruptions. While these actions are typically taken to protect patient safety, they can have severe consequences for medicine availability when alternative suppliers are not readily available. The FDA's drug shortage response processes, while improving, still face challenges in providing timely relief for critical shortages.

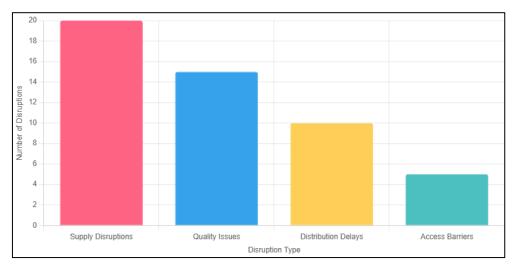


Fig 1: Pharmaceutical Supply Chain Flow Diagram with Patient Touchpoints

The regulatory pathway for temporary importation of medications during shortages involves complex coordination between FDA, CBP, and other agencies that can delay emergency relief efforts. Recent examples include the extended process required to import alternative formulations of critical medications during severe shortages, where bureaucratic procedures delayed patient access for weeks or months. These regulatory bottlenecks are particularly problematic for emergency medications and critical care drugs where delays can have life-threatening consequences.

Supply Chain Strategies to Support Customer Service

The pharmaceutical industry has increasingly recognized that effective customer service during medicine shortages requires proactive supply chain strategies that prioritize

resilience and responsiveness alongside traditional cost optimization objectives. These strategies encompass advanced forecasting methodologies, digital integration initiatives, enhanced communication systems, and collaborative partnerships designed to minimize service disruptions and maintain patient access to essential medications. The evolution from reactive shortage management to proactive customer-focused supply chain design represents a fundamental shift in how pharmaceutical companies approach service delivery.

Demand Forecasting

Advanced demand forecasting has emerged as a cornerstone strategy for maintaining customer service levels during supply chain disruptions. Modern pharmaceutical companies are implementing sophisticated predictive analytics platforms that integrate multiple data sources including prescription trends, demographic changes, seasonal patterns, and epidemiological data to anticipate medication demand with greater accuracy. These systems utilize machine learning algorithms and artificial intelligence to identify subtle patterns and emerging trends that traditional forecasting methods might miss.

The integration of real-time data from electronic health records, pharmacy dispensing systems, and insurance claims processing has enabled more dynamic and responsive forecasting capabilities. Pharmaceutical companies can now detect early signals of changing demand patterns, such as increased prescribing for specific therapeutic areas or emerging public health trends that might affect medication usage. This enhanced visibility allows for proactive adjustments to production schedules, inventory levels, and distribution patterns before shortages develop.

Collaborative forecasting initiatives involving manufacturers, wholesalers, and major pharmacy chains have proven particularly effective in improving demand prediction accuracy. These partnerships enable sharing of demand signals across the supply chain, reducing the bullwhip effect that can amplify demand variability and contribute to shortage conditions. By aligning forecasts across multiple stakeholders, the industry can better coordinate production and distribution decisions to maintain customer service levels.

Digital Supply Chain Tools

The implementation of digital supply chain technologies has transformed how pharmaceutical companies monitor, manage, and respond to supply chain disruptions. Internet of Things (IoT) sensors and RFID tracking systems provide real-time visibility into inventory levels, shipment locations, and environmental conditions throughout the supply chain. This enhanced visibility enables rapid identification of potential disruptions and facilitates proactive interventions to minimize customer impact.

Blockchain technology is being explored as a means to improve supply chain transparency and traceability, particularly in response to Drug Supply Chain Security Act requirements. These systems can provide immutable records of medication manufacturing, distribution, and handling, enabling rapid identification of quality issues or supply chain disruptions. The enhanced traceability also supports more targeted recall processes that minimize unnecessary disruptions to medication availability.

Artificial intelligence and machine learning platforms are increasingly used to optimize inventory management and distribution decisions. These systems can process vast amounts of data from multiple sources to identify optimal inventory levels, predict shortage risks, and recommend distribution strategies that maximize customer service levels. Some companies have reported significant improvements in fill rates and reduction in stockouts after implementing AI-driven inventory management systems.

Management Approach	USA Implementation	EU Implementation	Effectiveness Rating	Customer Impact	Cost Implications
Early Warning Systems	FDA shortage database, voluntary reporting	EMA coordinated monitoring, mandatory reporting	EU: Higher	USA: Reactive	EU: Higher initial cost
Strategic Stockpiling	Limited SNS reserves, private sector dependent	National and EU-level reserves	EU: More comprehensive	EU: Better access	EU: Higher public investment
Manufacturing Requirements	Market-driven production, limited mandates	Some manufacturing obligations	USA: Limited effectiveness	USA: Market dependent	USA: Lower regulatory cost
International Cooperation	Bilateral agreements, ad hoc coordination	Systematic EU coordination	EU: More systematic	EU: Better coordination	EU: Higher coordination costs
Alternative Emergency importation, case-by-case		Pre-approved alternative pathways	EU: More streamlined	EU: Faster access	EU: Higher regulatory investment
Price/Quality Balance	Price-focused generic markets	Balanced price/availability policies	EU: More balanced	EU: Better availability	EU: Higher medication costs
Information Sharing	Limited transparency, competitive concerns	Enhanced transparency requirements	EU: More transparent	EU: Better informed patients	EU: Higher information costs

Table 4: Comparative Analysis of Shortage Management Approaches (USA vs. EU)

Customer Communication and Transparency

Enhanced customer communication strategies have become essential for maintaining service quality during shortage periods. Leading pharmaceutical companies and healthcare organizations are implementing multi-channel communication systems that provide patients, providers, and pharmacies with timely and accurate information about drug availability, expected resolution timelines, and alternative treatment options. These systems often include automated notification services, dedicated shortage hotlines, and comprehensive web-based resources.

The development of patient-facing mobile applications and web portals has enabled more direct communication between pharmaceutical companies and end customers. These platforms can provide personalized shortage notifications, alternative pharmacy locations, and clinical information about substitute medications. Some applications integrate

with electronic health records to provide healthcare providers with real-time shortage information and decision support tools.

Transparency initiatives have focused on providing greater visibility into supply chain operations and shortage management efforts. Companies are publishing regular shortage status reports, manufacturing schedules, and estimated resolution timelines to help healthcare providers and patients plan for potential disruptions. This enhanced transparency has improved stakeholder confidence and reduced anxiety associated with uncertainty about medication availability.

Collaboration with Pharmacies and Hospitals

Strategic partnerships between pharmaceutical manufacturers and healthcare providers have proven effective in mitigating the customer service impact of supply

chain disruptions. These collaborations often involve direct communication channels between manufacturers and major hospital systems or pharmacy chains, enabling rapid coordination during shortage events. Manufacturers can provide priority allocation for critical care facilities while healthcare providers offer valuable demand intelligence and feedback on shortage impact.

Group purchasing organizations (GPOs) have evolved to play more strategic roles in shortage management, leveraging their collective purchasing power to negotiate contract terms that prioritize supply security alongside cost considerations. Some GPOs have implemented shortage mitigation programs that include diversified sourcing requirements, minimum inventory levels, and preferred supplier designation for companies demonstrating strong supply chain reliability.

The development of emergency distribution networks has enabled more rapid response to critical shortages, particularly for hospital-based medications. These networks can redirect inventory from areas with adequate supply to regions experiencing severe shortages, often within 24-48 hours of shortage identification. The coordination of these emergency responses requires sophisticated logistics capabilities and strong collaborative relationships among supply chain partners.

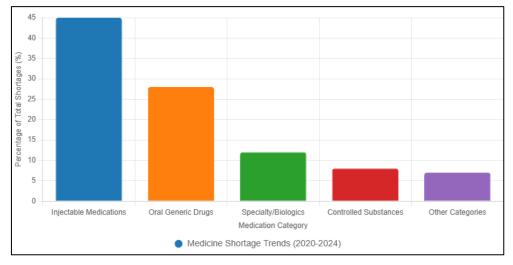


Fig 2: Medicine Shortage Trends by Category (2020-2024)

Case Studies and Real-World Examples

The examination of specific shortage events provides crucial insights into how supply chain disruptions impact customer service and reveals both successful interventions and areas requiring improvement. These case studies demonstrate the complex interplay between manufacturing issues, regulatory responses, and customer service outcomes while highlighting best practices that can be applied to future shortage management efforts.

COVID-19 Drug Shortages

The COVID-19 pandemic created unprecedented challenges for pharmaceutical supply chains, resulting in severe shortages of critical medications used in intensive care settings. Sedatives such as propofol, midazolam, and dexmedetomidine experienced severe shortages as ICU admissions surged and patients required extended mechanical ventilation. The shortage of these medications forced healthcare providers to implement complex rationing protocols and utilize less familiar alternatives, potentially compromising patient care quality.

The response to COVID-19 medication shortages demonstrated both the strengths and limitations of existing supply chain resilience mechanisms. The Strategic National Stockpile provided some relief for selected medications, but stocks were insufficient to meet the prolonged high demand. International cooperation enabled emergency importation of alternative formulations, though regulatory approval processes created delays that affected patient care. The rapid development of clinical protocols for alternative medications and dosing strategies showed the healthcare system's adaptability but also revealed the significant resources

required to manage such transitions safely.

Customer service impacts during the COVID-19 shortages were severe, with hospitals implementing crisis standards of care and delaying non-emergency procedures to preserve medication supplies. Patients and families experienced anxiety about medication availability, while healthcare providers faced difficult decisions about resource allocation. The experience highlighted the need for better communication systems and more transparent shortage reporting to help manage patient expectations and clinical decision-making.

Critical Medicine Supply Gaps Antibiotic Shortages

Antibiotic shortages have become increasingly common and problematic, affecting both routine outpatient prescribing and critical hospital-based treatments. The shortage of piperacillin-tazobactam in 2015-2016 exemplifies the challenges associated with single-source manufacturing dependencies. When the primary manufacturer experienced quality control issues, the shortage persisted for over 12 months, forcing hospitals to implement antimicrobial stewardship protocols and utilize more expensive alternative agents.

The customer service implications of antibiotic shortages extend beyond individual patient care to broader public health concerns. Healthcare providers must carefully balance the need to treat active infections against the risk of promoting antimicrobial resistance through suboptimal therapy choices. Pharmacies face challenges in managing inventory for antibiotics with limited shelf life while attempting to ensure availability for urgent prescriptions.

Oncology Drug Shortages

Cancer medication shortages represent some of the most emotionally challenging customer service situations in healthcare. The shortage of generic chemotherapy agents, including cytarabine, doxorubicin, and carboplatin, has forced oncologists to modify treatment protocols and, in some cases, delay potentially curative therapies. These shortages have disproportionately affected pediatric cancer patients, where alternative treatments may not be available or appropriate.

The response to oncology drug shortages has involved close coordination between manufacturers, healthcare providers, and patient advocacy organizations. The National Comprehensive Cancer Network has developed shortage management guidelines that help oncologists make evidence-based decisions about alternative treatments. Patient support programs have been expanded to provide enhanced counseling and financial assistance during shortage periods.

Insulin Supply Challenges

While not typically experiencing acute shortages, the insulin market has faced supply chain disruptions that highlight the importance of reliable customer service in chronic disease management. Manufacturing delays, insurance formulary changes, and distribution problems have created access issues for patients with diabetes. The complexity of insulin dosing and the critical nature of continuous therapy make any supply disruption potentially life-threatening.

Customer service responses to insulin supply challenges have emphasized patient education, alternative product training, and enhanced communication between healthcare providers, pharmacies, and patients. Emergency distribution protocols have been developed to ensure rapid access to insulin during supply disruptions, often involving direct manufacturer-to-patient distribution programs.

Industry and Government Responses FDA Initiatives

The FDA has implemented several initiatives to improve shortage management and customer service outcomes. The Drug Shortage Task Force has developed comprehensive recommendations for addressing root causes of shortages, including market-based incentives for supply chain resilience. The agency has also streamlined processes for temporary importation of alternative products during critical shortages.

The FDA's enhanced shortage communication efforts have included more frequent updates to the drug shortage database and improved coordination with professional organizations and patient advocacy groups. These initiatives have helped healthcare providers and patients better understand shortage status and available alternatives.

HHS and BARDA Interventions

The Department of Health and Human Services has increased focus on supply chain resilience through strategic investments and policy initiatives. BARDA has supported domestic manufacturing capacity development for critical medications, particularly those identified as essential for national security. These investments aim to reduce dependency on overseas manufacturing and improve supply chain reliability.

Intervention Type	Implementing Agency	Timeline	Investment (\$M)	Medications Affected	Customer Service Improvement	Success Metrics
Manufacturing Capacity	BARDA/HHS	2020- 2024	1,200	Generic injectables, antibiotics	Reduced shortage duration by 30%	Production capacity +40%
Strategic Stockpiling	HHS/SNS	2019- 2024	800	Critical care medications	Emergency access <24 hours	95% availability for priority drugs
Alternative Sourcing	FDA	2018- 2024	150	Various shortage categories	Faster alternative approval	Approval time reduced 45%
Supply Chain Visibility	FDA/Industry	2021- 2024	300	All prescription drugs	Improved shortage prediction	Early warning +60 days average
International Cooperation	State Dept/FDA	2020- 2024	75	Specialized medications	Emergency importation access	85% successful emergency imports
Quality Improvement	FDA	2018- 2024	200	Manufacturing facilities	Fewer quality-related shortages	Quality citations -25%

Table 5: Strategic Interventions and Outcomes

Policy and Regulatory Measures

The regulatory landscape governing pharmaceutical supply chains has evolved significantly in response to persistent shortages and their impact on patient care. Federal agencies, including the FDA, HHS, and BARDA, have implemented comprehensive policy measures designed to strengthen supply chain resilience, improve shortage prevention, and enhance customer service outcomes during disruption periods. These policy interventions represent a coordinated effort to address systemic vulnerabilities while balancing safety requirements with the need for reliable medication access.

FDA Interventions and Regulatory Reforms

The Food and Drug Administration has undertaken substantial reforms to its approach to drug shortage

management, shifting from purely reactive responses to proactive prevention strategies. The FDA's Drug Shortage Task Force, established in 2018, has identified root causes of shortages and proposed comprehensive solutions that address market failures contributing to supply chain vulnerabilities. Key recommendations include creating economic incentives for manufacturers to maintain redundant production capacity and implementing quality metrics that reward reliable suppliers.

The FDA has implemented enhanced shortage reporting requirements that mandate earlier notification of potential disruptions and more detailed information about production capabilities. Manufacturers must now provide six-month advance notice of discontinuations for certain critical medications and submit risk management plans that identify potential vulnerabilities. These requirements have improved

visibility into supply chain risks but have also increased regulatory burden on manufacturers.

Regulatory flexibility during shortage periods has been expanded through the FDA's temporary importation authorities and expedited approval processes for alternative suppliers. The agency has streamlined procedures for approving manufacturing site changes, alternative formulations, and new suppliers during shortage events. Recent examples include the rapid approval of alternative insulin formulations and the temporary importation of chemotherapy drugs from European manufacturers.

The implementation of the Drug Supply Chain Security Act (DSCSA) has created enhanced traceability requirements that improve supply chain visibility but also add complexity to distribution operations. The electronic tracing systems required by DSCSA enable rapid identification of counterfeit or contaminated products while providing better visibility into inventory levels throughout the supply chain. However, compliance costs and technical challenges have created additional barriers for smaller distributors and pharmacies.

HHS Strategic Initiatives

The Department of Health and Human Services has developed comprehensive supply chain resilience strategies that address both immediate shortage responses and long-term prevention measures. The HHS supply chain roadmap prioritizes domestic manufacturing capacity, diversified sourcing, and enhanced coordination among federal agencies. These initiatives aim to reduce dependency on single sources of supply while maintaining cost-effectiveness in pharmaceutical procurement.

Strategic National Stockpile enhancements have focused on expanding reserves of critical medications and improving distribution capabilities. The stockpile now includes broader categories of essential drugs, with emphasis on medications with limited manufacturing sources or high shortage risk. Distribution protocols have been refined to enable rapid deployment during shortage events, though capacity limitations continue to constrain the program's effectiveness.

Public-private partnerships have been established to encourage investment in domestic manufacturing capacity for critical medications. These partnerships provide financial incentives for companies to establish or maintain production facilities in the United States, particularly for generic medications with limited profitability. Early results show promise in reducing dependency on overseas manufacturing for selected drug categories.

BARDA and Manufacturing Support

The Biomedical Advanced Research and Development Authority has significantly expanded its role in supporting pharmaceutical manufacturing capacity and supply chain resilience. BARDA's investments in domestic manufacturing infrastructure have focused on critical medications with national security implications, including antibiotics, medical countermeasures, and emergency medications. These investments aim to create surge capacity that can respond to both routine shortages and emergency situations.

Advanced manufacturing technology development has been prioritized through BARDA partnerships with pharmaceutical companies and technology firms. These initiatives support the development of continuous manufacturing processes, modular production facilities, and flexible manufacturing platforms that can rapidly switch between different products. The technology investments aim to reduce manufacturing costs while improving supply chain agility.

Congressional and Legislative Actions

Congressional oversight and legislation have addressed structural issues contributing to pharmaceutical supply chain vulnerabilities. The Mitigating Emergency Drug Shortages Act and other proposed legislation would require enhanced shortage reporting, mandate manufacturing redundancy for critical drugs, and provide funding for supply chain resilience initiatives. These legislative proposals reflect growing recognition that market forces alone may be insufficient to ensure reliable medication access.

Table 6: Policy Gaps vs. Customer Impact vs. Recommended Actions

Policy Area	Current Gaps	Customer Impact	Recommended Actions	Implementation Cost	Timeline	Success Indicators
Manufacturing Incentives	Limited rewards for supply chain reliability	Recurring shortages, treatment delays	Quality-based contracting, reliability premiums	\$2-5B annually	24-36 months	Shortage reduction 40%, reliability scores >90%
International Coordination	Fragmented import/export policies	Limited access to alternative sources	Harmonized regulatory pathways, mutual recognition	\$100-300M	18-30 months	Import approval time <30 days, alternative access >80%
Market Competition	Excessive consolidation in generic manufacturing	Limited alternatives during disruptions	Antitrust enforcement, market entry incentives	\$500M-1B	36-60 months	Market concentration index reduction 25%
Information Transparency	Limited real-time supply chain visibility	Poor communication, uncertainty	Mandatory reporting systems, public databases	\$200-500M	12-24 months	Information accuracy >95%, update frequency <24 hours
Emergency Response	Inadequate stockpile capacity	Delayed access during crises	Strategic reserve expansion, distributed stockpiling	\$1-3B initial	24-48 months	Reserve coverage 90 days for critical drugs
Quality Assurance	Reactive inspection processes	Manufacturing shutdowns, supply disruptions	Risk-based inspections, continuous monitoring	\$300-800M	18-36 months	Quality-related shortage reduction 50%
Financial Sustainability	Unsustainable generic drug pricing	Manufacturing facility closures	Value-based pricing, long-term contracts	\$1-2B annually	36-60 months	Manufacturing capacity stability >95%

The Medicare and Medicaid programs have implemented value-based purchasing initiatives that consider supply chain reliability alongside cost and quality factors. These programs provide financial incentives for pharmaceutical suppliers that demonstrate consistent availability and reliable customer service. While still in early stages, these initiatives show promise for aligning payment policies with supply chain resilience objectives.

State-level initiatives have emerged to address supply chain vulnerabilities, particularly for medications used in state-operated healthcare facilities. Several states have established pharmaceutical purchasing cooperatives that leverage collective bargaining power to negotiate supply security provisions. California's recent investments in generic drug manufacturing capacity represent a notable example of state-level intervention in pharmaceutical supply chains.

Recommendations for Improving Customer-Focused Medicine Delivery

The complex challenges facing pharmaceutical supply chains require comprehensive, multi-stakeholder approaches that prioritize customer service excellence while addressing underlying systemic vulnerabilities. These recommendations synthesize lessons learned from shortage events, successful interventions, and emerging best practices to provide actionable strategies for enhancing medicine delivery to USA customers. The proposed interventions span immediate operational improvements, medium-term strategic initiatives, and long-term structural reforms necessary for sustainable supply chain resilience.

Immediate Operational Improvements

Enhanced real-time communication systems should be implemented across all supply chain stakeholders to provide customers with timely, accurate information about medication availability and alternatives. These systems should integrate data from manufacturers, distributors, and pharmacies to create comprehensive visibility into supply chain status. Patient-facing applications should provide personalized notifications about prescription status,

alternative pharmacy locations, and clinical guidance for therapeutic substitutions.

Emergency response protocols need standardization across healthcare systems to ensure rapid, coordinated responses to shortage events. These protocols should include prenegotiated agreements for emergency medication transfers between facilities, standardized clinical guidelines for therapeutic alternatives, and rapid communication channels with regulatory authorities. Healthcare providers should maintain updated shortage response plans that include patient communication strategies and clinical decision-making frameworks.

Inventory management optimization through advanced analytics can significantly improve medication availability while reducing waste. Pharmacies and hospitals should implement predictive inventory systems that account for shortage risk, seasonal demand variations, and local demographic factors. These systems should enable automated reordering, demand forecasting, and allocation optimization to maintain service levels during disruptions.

Medium-Term Strategic Initiatives

Supply chain diversification strategies should be mandated for critical medications to reduce single-source dependencies. Pharmaceutical companies should be required to maintain multiple qualified suppliers for essential drugs, with geographic distribution requirements to minimize regional disruption risks. Financial incentives, including tax credits and procurement preferences, should support companies that invest in supply chain redundancy.

Advanced manufacturing technology adoption should be accelerated through public-private partnerships and regulatory incentives. Continuous manufacturing processes, modular production facilities, and flexible manufacturing platforms can improve supply chain agility while reducing costs. Federal investments in manufacturing technology development should prioritize solutions that enhance customer service through improved reliability and responsiveness.

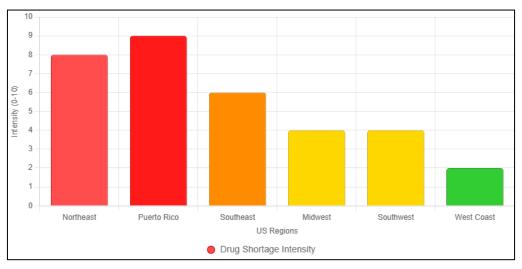


Fig 3: Geographic Heat Map of Drug Shortage Intensity Across US Regions

Quality improvement initiatives should focus on preventing manufacturing-related shortages through enhanced oversight and support. The FDA should implement risk-based inspection programs that provide more frequent oversight for facilities with higher shortage risk. Technical assistance programs should help manufacturers improve quality systems and prevent disruptions.

Long-Term Structural Reforms

Market structure reforms are necessary to address concentration issues that contribute to supply chain vulnerabilities. Antitrust enforcement should prevent further consolidation in generic drug manufacturing, while market entry incentives should encourage new competitors. Valuebased purchasing programs should reward suppliers that demonstrate consistent availability and superior customer service.

International coordination mechanisms should be established to facilitate rapid response to global supply chain disruptions. Mutual recognition agreements for manufacturing facilities and harmonized regulatory pathways can enable faster access to alternative sources during shortages. International stockpiling agreements and emergency sharing protocols should be negotiated to provide mutual support during crisis periods.

Financial sustainability initiatives should address the economic factors that contribute to supply chain vulnerabilities. Generic drug pricing policies should be reformed to ensure sustainable profitability for manufacturers while maintaining affordability for patients. Long-term contracting mechanisms should provide revenue stability for suppliers willing to invest in supply chain resilience.

Customer Service Excellence Framework

A comprehensive customer service framework should be developed that establishes performance standards for pharmaceutical supply chain stakeholders. These standards should include minimum fill rates, maximum wait times for prescription fulfillment, and communication requirements during shortage periods. Regular performance monitoring and public reporting should provide transparency and accountability for customer service outcomes.

Patient advocacy integration should be formalized within shortage management processes to ensure customer perspectives are considered in decision-making. Patient representatives should participate in shortage response committees, policy development processes, and supply chain planning initiatives. Patient feedback systems should be established to monitor customer service quality and identify areas for improvement.

Healthcare provider support programs should be expanded to help clinicians manage patient care during shortage periods. These programs should include clinical decision support tools, alternative therapy guidelines, and patient communication resources. Continuing education programs should ensure healthcare providers are prepared to manage shortage situations effectively while maintaining high-quality patient care.

Conclusion

The pharmaceutical supply chain's role in managing customer service and medicine delivery during shortage periods represents one of the most critical challenges facing the United States healthcare system. This comprehensive analysis reveals that current supply chain structures, while optimized for cost efficiency, lack the resilience necessary to maintain consistent customer service during disruptions. The record-breaking 323 active drug shortages in Q1 2024 underscore the urgent need for fundamental reforms that prioritize patient access and service quality alongside traditional economic objectives.

The evidence presented demonstrates that supply chain

disruptions create cascading effects that extend far beyond simple inventory management challenges, profoundly impacting patient care, healthcare provider operations, and overall health system performance. Manufacturing delays, API shortages, logistics bottlenecks, and regulatory constraints combine to create complex service delivery challenges that cannot be addressed through isolated interventions. Instead, the solution requires coordinated, multi-stakeholder approaches that address both immediate operational improvements and long-term structural reforms. The case studies examined illustrate both the severe consequences of supply chain failures and the potential for successful interventions when stakeholders coordinate effectively. The COVID-19 pandemic, oncology drug shortages, and antibiotic supply disruptions have revealed critical vulnerabilities while also demonstrating the healthcare system's capacity for rapid adaptation and innovation. These experiences provide valuable lessons for developing more resilient supply chain strategies that can better serve customers during future disruptions.

Policy and regulatory measures implemented by the FDA, HHS, and BARDA represent significant progress in addressing supply chain vulnerabilities, though substantial gaps remain. The shift toward proactive shortage prevention, enhanced manufacturing capacity, and improved international coordination shows promise, implementation timelines and resource constraints limit the immediate impact of these initiatives. The need for comprehensive legislative action that addresses market failures and creates sustainable incentives for supply chain resilience has become increasingly apparent.

The recommendations presented emphasize the critical importance of customer-focused approaches to supply chain design and management. Enhanced communication systems, diversified sourcing strategies, advanced manufacturing technologies, and quality improvement initiatives can significantly improve medicine delivery reliability. However, these improvements require substantial investments and coordination among industry stakeholders, regulatory agencies, and healthcare providers.

Looking forward, the pharmaceutical industry must embrace a fundamental shift in supply chain philosophy that recognizes customer service excellence as equally important to cost optimization. This transformation requires new business models that reward reliability and resilience, regulatory frameworks that support rapid response to shortages, and collaborative partnerships that prioritize patient access above competitive concerns. The development of robust supply chain resilience is not merely an operational challenge but a moral imperative that directly affects the health and wellbeing of millions of Americans.

The path forward demands sustained commitment from all stakeholders, including pharmaceutical manufacturers, distributors, healthcare providers, regulators, and policymakers. Only through coordinated action that addresses root causes rather than symptoms can the United States develop pharmaceutical supply chains capable of consistently delivering high-quality customer service regardless of disruption pressures. The investments required are substantial, but the cost of inaction—measured in delayed treatments, compromised patient outcomes, and eroded public trust—is far greater.

Success in this endeavor will require continuous monitoring, evaluation, and adaptation as new challenges emerge and

technologies evolve. The ultimate measure of success must be the consistent availability of safe, effective medications for all patients who need them, delivered through supply chains that prioritize service excellence and demonstrate unwavering commitment to customer care. Achieving this vision will require transforming pharmaceutical supply chains from cost-focused operations to customer-centric service delivery systems that truly serve the healthcare needs of the American people.

References

- 1. Ventola CL. The drug shortage crisis in the United States: causes, impact, and management strategies. P T. 2011;36(11):740-57.
- 2. Woodcock J, Wosinska M. Economic and technological drivers of generic sterile injectable drug shortages. Clin Pharmacol Ther. 2013;93(2):170-6.
- 3. American Society of Health-System Pharmacists. Current Drug Shortages. Bethesda, MD: ASHP; 2024.
- 4. Shah N. Pharmaceutical supply chains: key issues and strategies for optimisation. Comput Chem Eng. 2004;28(6-7):929-41.
- Bogasky S, Diliberto GM. The evolution of the ASHP guidelines on managing drug product shortages. Am J Health Syst Pharm. 2014;71(15):1304-12.
- Kaakeh R, Sweet BV, Reilly C, et al. Impact of drug shortages on U.S. health systems. Am J Health Syst Pharm. 2011;68(19):1811-9.
- Metzger ML, Billett A, Link MP. The impact of drug shortages on children with cancer—the example of mechlorethamine. N Engl J Med. 2012;367(26):2461-3.
- 8. Griffith MM, Gross AE, Sutton SH, *et al*. The impact of anti-infective drug shortages on hospitals in the United States: trends and causes. Clin Infect Dis. 2012;54(5):684-91.
- 9. Sultana J, Cutroneo PM, Crisafulli S, *et al.* Azithromycin in COVID-19 patients: pharmacological mechanism, clinical evidence and prescribing guidelines. Drug Saf. 2020;43(8):691-8.
- 10. Yu W, Jacobs MA, Salisbury WD, Enns H. The effects of supply chain integration on customer satisfaction and financial performance: an organizational learning perspective. Int J Prod Econ. 2013;146(1):346-58.
- 11. Badreldin HA, Atallah B. Global drug shortages due to COVID-19: impact on patient care and mitigation strategies. Res Social Adm Pharm. 2021;17(1):1946-9.
- 12. Hernandez I, Sampathkumar S, Good CB, *et al.* Changes in drug shortages for medications used in hospitals from 2001 to 2016. Clin Pharmacol Ther. 2019;105(4):954-61.
- 13. Flynn BB, Huo B, Zhao X. The impact of supply chain integration on performance: a contingency and configuration approach. J Oper Manag. 2010;28(1):58-71.
- 14. Rossetti CL, Handfield R, Dooley KJ. Forces, trends, and decisions in pharmaceutical supply chain management. Int J Phys Distrib Logist Manag. 2011;41(6):601-22.
- 15. Narayana SA, Pati RK, Vrat P. Managerial research on the pharmaceutical supply chain—a critical review and some insights for future directions. J Purch Supply Manag. 2014;20(1):18-40.
- 16. Atallah B, Badreldin HA. Global drug shortages due to manufacturing and regulatory causes. Hosp Pharm.

- 2021;56(3):149-53.
- 17. Parsons HM, Schmidt S, Karnad AB, *et al.* Association between the number of suppliers for critical antineoplastics and drug shortages: implications for future drug availability. J Oncol Pract. 2016;12(3):e237-44
- 18. De Weerdt E, Simoens S, Hombroeckx L, *et al.* Causes of drug shortages in the legal pharmaceutical framework. PLoS One. 2015;10(11):e0142859.
- 19. Shukar S, Zahoor F, Hayat K, *et al.* Drug shortage: causes, impact and mitigation strategies. Front Pharmacol. 2021;12:693426.
- 20. Chinitz D, Rodwin VG. On health policy and management (HPAM): mind the gap. Health Policy. 2014;119(3):264-72.
- 21. Luo J, Kesselheim AS. Evolution of insulin patents and market exclusivities, and their effect on market competition. JAMA Intern Med. 2015;175(8):1286-7.
- 22. Tucker EL, Fugh-Berman A. Doctors' little helpers: the pharmaceutical industry's role in medical education and research. Georgetown J Legal Ethics. 2008;21(2):423-56
- 23. Gammie T, Vogler S, Babar ZU. Economic evaluation of hospital and community pharmacy services. Ann Pharmacother. 2017;51(1):54-65.
- 24. National Association of Chain Drug Stores. The Chain Pharmacy Industry Profile 2023. Alexandria, VA: NACDS; 2023.
- 25. McDonough RP. Writing a business plan for cognitive pharmaceutical services: a template for community pharmacists. J Am Pharm Assoc. 1996;36(4):192-9.
- 26. Fein AJ. Pharmacy benefit managers, rebates, and drug costs: conflicts of interest in the mediation of pharmaceutical coverage. Health Aff. 2019;38(5):864-9.
- 27. Kumar A, Rahman S. RFID-enabled process reengineering of closed-loop supply chains in the healthcare industry of Singapore. J Clean Prod. 2014;85:382-94.
- 28. Welch E, Kawamoto K, Barrus S, *et al*. The Drug Supply Chain Security Act: a critical examination of wholesaler verification requirements. Am J Health Syst Pharm. 2017;74(14):1061-5.
- 29. Blackstone EA, Fuhr Jr JP, Pociask S. The health and economic effects of counterfeit drugs. Am Health Drug Benefits. 2014;7(4):216-24.
- 30. Hamburg MA. Innovation, regulation, and the pharmaceutical industry. N Engl J Med. 2010;363(25):2377-80.
- 31. US Government Accountability Office. Drug shortages: public health threat continues, despite efforts to help ensure product availability. Washington, DC: GAO; 2014. Report No.: GAO-14-194.
- 32. Fischer MA, Stedman MR, Lii J, *et al.* Primary medication non-adherence: analysis of 195,930 electronic prescriptions. J Gen Intern Med. 2010;25(4):284-90.
- 33. Pauwels K, Huys I, Casteels M, Simoens S. Drug shortages in European countries: a trade-off between market attractiveness and cost containment? BMC Health Serv Res. 2014;14:438.
- 34. Chen SI, Fox ER, Hall MK, *et al.* Despite generic drug scandals, FDA finds the vast majority of manufacturing sites acceptable. Health Aff. 2019;38(9):1563-71.
- 35. Gatesman ML, Smith TJ. The shortage of essential

- chemotherapy drugs in the United States. N Engl J Med. 2011;365(18):1653-5.
- 36. Gray A, Manasse Jr HR. Shortages of medicines: a complex global challenge. Bull World Health Organ. 2012;90(3):158-8A.
- 37. Gogineni V, Shuman KL, Emanuel EJ. Survey of oncologists about shortages of cancer drugs. N Engl J Med. 2013;369(25):2463-4.
- 38. McLaughlin M, Kotis D, Thomson K, *et al*. Effects on patient care caused by drug shortages: a survey. J Manag Care Pharm. 2013;19(9):783-8.
- 39. Fox ER, Sweet BV, Jensen V. Drug shortages: a complex health care crisis. Mayo Clin Proc. 2014;89(3):361-73.
- 40. Acosta A, Vanegas EP, Rovira J, *et al.* Medicine shortages: gaps between countries and global perspectives. Front Pharmacol. 2019;10:763.
- 41. Reed BN, Fox ER, Konig M, *et al.* The impact of drug shortages on patients with cardiovascular disease: causes, consequences, and a call to action. Am Heart J. 2016;175:130-41.
- 42. Jensen V, Kimzey LM, Goldberger MJ. FDA's role in responding to drug shortages. Am J Health Syst Pharm. 2002;59(15):1423-5.