

Supplier Relationship Management Strategies Fostering Innovation, Collaboration, and Resilience in Global Supply Chain Ecosystems

Patience Ndidi Ike 1* , Ejielo Ogbuefi 2 , Stephanie Blessing Nnabueze 3 , Jennifer Olatunde-Thorpe 4 , Stephen Ehilenomen Aifuwa 5 , Theophilus Onyekachukwu Oshoba 6 , David Akokodaripon 7

- ¹ Geometric Power: Aba Power Limited Electric, Nigeria
- ² Company: Mac-Umec Associate Limited, Nigeria
- ³ Starsight Energy Ghana Limited, Ghana
- ⁴ Union Bank of Nigeria, Lagos, Nigeria
- 5-6 Independent Researcher, Nigeria
- ⁷ Take Blip, Brazil
- * Corresponding Author: Patience Ndidi Ike

Article Info

P-ISSN: 3051-3502 **E-ISSN:** 3051-3510

Volume: 02 Issue: 02

July - December 2021 Received: 13-06-2021 Accepted: 14-07-2021 Published: 12-08-2021

Page No: 52-62

Abstract

Global supply chains are increasingly characterized by complexity, interdependence, and vulnerability to disruptions, necessitating strategic approaches to supplier management. Supplier Relationship Management (SRM) has emerged as a critical framework for fostering innovation, collaboration, and resilience across global supply chain ecosystems. Unlike transactional procurement practices, SRM emphasizes long-term, trust-based partnerships that align organizational goals with supplier capabilities, creating shared value and enabling adaptive responses to volatile market conditions. A central dimension of SRM is its role in driving innovation. By engaging suppliers as strategic partners, firms can leverage joint research and development, knowledge sharing, and technology co-creation to accelerate product development cycles and enhance competitiveness. Collaborative models also enhance visibility and coordination across supply tiers, improving demand forecasting, inventory alignment, and responsiveness to shifts in customer expectations. Such integration not only reduces inefficiencies but also creates platforms for crossindustry innovation. Equally important is SRM's contribution to resilience. By fostering transparent communication and mutual trust, organizations and suppliers can engage in risk-sharing agreements, diversify sourcing strategies, and develop contingency plans that mitigate disruptions from geopolitical tensions, regulatory shifts, or natural disasters. The adoption of digital enablers—including AI, blockchain, and predictive analytics—further strengthens SRM by enhancing supplier performance monitoring, enabling real-time collaboration, and supporting ethical, sustainable sourcing practices aligned with environmental, social, and governance (ESG) frameworks. Strategically, SRM delivers value across multiple stakeholders: enterprises benefit from cost efficiency, agility, and innovation; suppliers gain stability and co-creation opportunities; while policymakers can promote transparent, sustainable trade ecosystems. As global supply chains evolve toward circularity and autonomy, SRM will remain indispensable in shaping ecosystems that are not only efficient but also resilient, collaborative, and innovation-driven.

DOI: https://doi.org/10.54660/IJMER.2021.2.2.52-62

Keywords: Supplier relationship, Management strategies, Fostering innovation, Collaboration, Resilience, Global supply chain, Ecosystems

1. Introduction

Supplier Relationship Management (SRM) has emerged as a cornerstone of modern supply chain strategy, defined as a systematic approach to managing an organization's interactions with its suppliers with the goal of maximizing value, fostering collaboration, and ensuring long-term competitiveness (Awe *et al.*, 2017; Oni *et al.*, 2018). Unlike traditional procurement

practices that emphasize cost minimization and transactional efficiency, SRM focuses on building and nurturing partnerships that create mutual benefits for buyers and suppliers. It involves structured processes, governance frameworks, performance metrics, and technologies designed to deepen trust, improve visibility, and align supplier capabilities with the strategic goals of enterprises (Awe, 2017; Ogundipe *et al.*, 2019).

The relevance of SRM is amplified in the context of today's globalized, complex, and disruption-prone supply chains. Supply networks now span multiple geographies, industries, and tiers of suppliers, resulting in unprecedented interdependence (Awe et al., 2017; Akpan et al., 2017). While globalization offers access to cost advantages, specialized expertise, and wider market opportunities, it simultaneously exposes firms to heightened risks. Events such as the COVID-19 pandemic, geopolitical conflicts, trade protectionism, and natural disasters have revealed the vulnerabilities inherent in fragmented and extended supply chains (Nwokediegwuet al., 2019; Bankole et al., 2020). Disruptions in one part of the network can rapidly cascade across industries, highlighting the need for collaborative mechanisms to maintain continuity and resilience. In this environment, SRM provides a framework for not only mitigating risks but also enhancing the adaptability and robustness of supply ecosystems (ONYEKACHI et al., 2020; Okiye, 2021).

A critical shift underlying SRM is the transition from transactional supplier management toward strategic, collaborative partnerships. Traditional approaches often reduced supplier engagement to price negotiations, shortterm contracts, and adversarial bargaining (Bankole et al., 2021; Nwokediegwuet al., 2021). While effective in achieving immediate cost savings, such models frequently overlooked opportunities for innovation, long-term value creation, and resilience. In contrast, SRM emphasizes trust, transparency, and joint value generation. Strategic partnerships allow organizations to co-develop new technologies, improve product quality, accelerate time-tomarket, and enhance supply chain visibility. Suppliers, in turn, benefit from stable demand, knowledge sharing, and opportunities to invest in capability development (Adeshina et al., 2021; Ajayi and Akanji, 2021). This reciprocity competitive transforms supplier relationships from exchanges into platforms for innovation and shared growth. Furthermore, SRM plays a vital role in aligning supply chain practices with sustainability and governance objectives (Annan, 2021). With increasing pressure from consumers, regulators, and investors to meet Environmental, Social, and Governance (ESG) standards, organizations rely on suppliers to uphold ethical sourcing, environmental stewardship, and labor rights. Collaborative SRM frameworks facilitate compliance by integrating sustainability criteria into supplier evaluation, monitoring, and development programs. Digital technologies such as blockchain, artificial intelligence, and predictive analytics further augment SRM by enabling realtime performance monitoring, risk detection, and enhanced communication across supply tiers (Awe, 2021; Ejibenamet al., 2021).

SRM represents a paradigm shift in supply chain management, moving beyond cost-focused transactions to holistic partnerships that create competitive advantage, resilience, and innovation capacity. As supply chains

continue to expand in scale and complexity, SRM offers enterprises, suppliers, and policymakers a critical strategic lever for navigating volatility and building sustainable, adaptive global trade ecosystems (Halliday, 2021; Katsina *et al.*, 2021).

2. Methodology

The PRISMA methodology was applied to systematically identify, evaluate, and synthesize academic and industry literature on Supplier Relationship Management (SRM) strategies fostering innovation, collaboration, and resilience in global supply chain ecosystems. The search process involved databases including Scopus, Web of Science, IEEE Xplore, Emerald Insight, and Google Scholar, supplemented by industry reports from consulting firms and international organizations such as the World Economic Forum, OECD, and WTO. Keywords combined terms such as "Supplier Management," Relationship "strategic supplier collaboration," "supply chain resilience," "innovation partnerships," and "global supply ecosystems." Boolean operators and truncation were applied to capture variations and ensure comprehensive coverage.

The inclusion criteria focused on peer-reviewed journal articles, conference proceedings, and credible industry publications published between 2005 and 2025, reflecting both foundational and contemporary perspectives. Studies were selected if they examined SRM frameworks, supplier-enabled collaborative supplier strategies, innovation, resilience mechanisms, or the role of SRM in sustainability and risk management. Exclusion criteria eliminated papers that addressed procurement solely in transactional or cost-reduction terms without reference to strategic or relational dimensions. Literature not available in English or lacking empirical or conceptual rigor was also excluded.

The screening process followed PRISMA guidelines. The initial search yielded 2,468 records, which were reduced to 1,120 after removing duplicates. Titles and abstracts were screened for relevance, narrowing the pool to 356 studies. Full-text assessment further excluded 198 articles that lacked direct applicability, resulting in 158 studies included in the final synthesis. Data were extracted systematically, focusing on study objectives, methodological approaches, frameworks of SRM, key outcomes, and identified challenges.

The synthesis process involved thematic coding to identify recurrent patterns across the selected literature. Three core themes emerged: (i) SRM as a driver of supplier-enabled innovation through joint R&D, co-design, and knowledge sharing; (ii) SRM as a mechanism for collaboration and trustbuilding across globalized, multi-tier supply chains; and (iii) SRM as an enabler of resilience, sustainability, and risk mitigation in contexts of geopolitical and economic volatility. Cross-comparisons were conducted to highlight sectoral applications, best practices, and governance models shaping SRM in both manufacturing and service-based supply chains. The PRISMA-based methodology ensured transparency, reproducibility, and comprehensiveness in capturing the breadth of SRM strategies relevant to global supply chain ecosystems. The final pool of studies provides a robust evidence base for analyzing how SRM contributes to fostering innovation, collaboration, and resilience in increasingly complex and disruption-prone supply networks.

2.1. Foundations of Supplier Relationship Management

Supplier Relationship Management (SRM) represents a strategic discipline within supply chain management that emphasizes building structured, value-creating relationships with suppliers beyond transactional exchanges. As global supply networks become increasingly complex and disruption-prone, the foundations of SRM are rooted in principles of trust, transparency, and collaboration (Vermesan and Bacquet, 2019; Benzaid, C. and Taleb, 2020). These principles establish the conditions necessary for innovation, resilience, and sustained competitiveness.

At the heart of SRM lies trust, which functions as the cornerstone of successful supplier partnerships. Trust fosters openness in information sharing, reduces the perceived risks of opportunistic behavior, and allows suppliers and buyers to align on long-term objectives rather than short-term gains. Transparency further complements trust by ensuring that both parties have visibility into key processes, such as pricing structures, capacity constraints, and quality performance (Gold and Heikkurinen, 2018; Brun *et al.*, 2020). When transparency is institutionalized through digital platforms and reporting standards, it reduces information asymmetry and builds confidence in collaborative decision-making. Together, trust and transparency create the foundation for long-term collaboration, enabling joint problem-solving, coinnovation, and shared investment in resilience strategies.

A critical aspect of SRM involves differentiating between strategic suppliers and transactional vendors. Transactional vendors typically provide standardized goods or services that can be easily substituted and are managed primarily through cost and efficiency metrics. In contrast, strategic suppliers provide unique capabilities, advanced technologies, or critical inputs that significantly influence the buyer's competitive positioning. Managing strategic suppliers requires a shift from a purely procurement-driven mindset to a partnership-oriented approach, where joint value creation becomes the focal point. For example, strategic suppliers may be engaged in collaborative product design, joint research and development, or early-stage innovation projects. Such differentiation allows firms to allocate resources effectively, focusing deeper relational investments where the potential for strategic advantage is greatest.

The establishment of governance frameworks is another foundational pillar of SRM. Governance structures define the mechanisms through which relationships are managed, risks are monitored, and performance is evaluated. They typically include formal agreements such as master service contracts, supplier development programs, and dispute resolution mechanisms. Governance frameworks balance the flexibility required for innovation with the discipline necessary for accountability (Sergeeva, 2020; Hemphill, 2020). They ensure that both parties remain aligned with agreed objectives and provide structured processes for escalating issues or renegotiating terms in response to evolving market conditions.

Within these governance frameworks, performance scorecards play a pivotal role in monitoring and continuously improving supplier contributions. Scorecards typically evaluate suppliers across multiple dimensions, including cost efficiency, quality, delivery reliability, sustainability compliance, and innovation capacity. By adopting balanced scorecards that integrate financial and non-financial metrics, organizations can shift the focus beyond cost reduction toward broader strategic outcomes. For instance, incorporating environmental, social, and governance (ESG) indicators into supplier scorecards encourages sustainable practices, aligning supply chain operations with corporate social responsibility commitments. Scorecards also provide a data-driven foundation for supplier development initiatives, where underperforming suppliers can be supported with targeted improvement programs, while high-performing suppliers are rewarded with long-term contracts or preferred supplier status.

Moreover, SRM's foundational principles are increasingly supported by digital technologies that facilitate real-time collaboration and visibility. Platforms that integrate supplier portals, analytics dashboards, and predictive insights allow for enhanced transparency and continuous monitoring of supplier performance. This digitalization strengthens trust by providing objective evidence of performance and fosters collaboration by enabling joint planning across geographically dispersed supply chain partners.

The foundations of Supplier Relationship Management rest on trust, transparency, and long-term collaboration, supported by the clear differentiation of strategic suppliers from transactional vendors. Governance frameworks and performance scorecards institutionalize these relationships, ensuring accountability, alignment, and continuous improvement. By embedding these principles, organizations are able to move beyond cost-focused procurement toward a more strategic, value-driven approach that enhances resilience, fosters innovation, and builds sustainable global supply chain ecosystems (Gure and Karugu, 2018; Nujenet al., 2019). These foundations not only ensure short-term efficiency but also provide the structural conditions for long-term competitive advantage in volatile and uncertain markets.

2.2. SRM as a Driver of Innovation

Supplier Relationship Management (SRM) has evolved from a procurement-centric function focused on cost efficiency into a strategic enabler of innovation within global supply chain ecosystems as shown in figure 1. By cultivating collaborative partnerships with suppliers, organizations can leverage external expertise, technologies, and capabilities to accelerate the development of new products, processes, and services. In industries where technological complexity, product lifecycles, and market competition intensify, SRM becomes a critical framework for co-creation and value innovation (Au-Yeung and Venneman, 2019; Jaskó *et al.*, 2020).

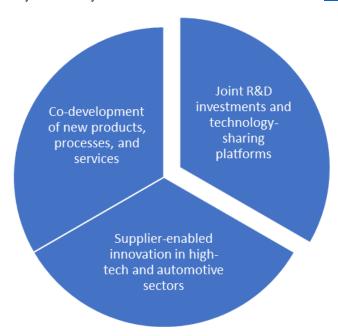


Fig 1: SRM as a Driver of Innovation

One of the most prominent ways SRM drives innovation is through the co-development of new products, processes, and services. Suppliers often possess specialized knowledge of raw materials, components, or manufacturing methods that can significantly influence product design and performance. By engaging suppliers early in the product development lifecycle, organizations can tap into this expertise to optimize designs, reduce costs, and improve time-to-market. For instance, suppliers of advanced materials can collaborate with manufacturers to develop lighter, stronger components for aerospace or automotive applications. Similarly, in the consumer electronics sector, semiconductor suppliers contribute directly to shaping the performance and energy efficiency of next-generation devices. Co-development under SRM frameworks ensures that innovation is not siloed but distributed across the supply chain, enhancing collective competitiveness.

Beyond joint product design, SRM also facilitates joint research and development (R&D) investments and technology-sharing platforms. Strategic suppliers are often willing to commit resources to collaborative R&D when they are assured of long-term partnerships and shared benefits. This approach reduces innovation risks and distributes costs across multiple stakeholders, making ambitious projects more feasible. For example, automotive companies increasingly collaborate with battery technology suppliers to advance electric vehicle (EV) innovation, sharing laboratories, prototypes, and intellectual property to accelerate breakthroughs in energy density and charging efficiency. Similarly, high-tech firms have established joint R&D centers with suppliers to co-invest in areas such as semiconductor miniaturization, cloud infrastructure, or artificial intelligence (AI) hardware. Technology-sharing platforms, enabled by digital ecosystems, further expand the scope of collaboration by providing secure spaces for cosimulation, and testing. These platforms institutionalize knowledge exchange, reduce duplication of efforts, and enable suppliers and buyers to align innovation roadmaps more effectively.

Case studies highlight the transformative role of supplierenabled innovation. In the high-tech sector, leading companies such as Apple and Samsung exemplify how SRM fosters co-development. Apple's close relationships with suppliers like TSMC (Taiwan Semiconductor Manufacturing Company) and Foxconn have been fundamental to its ability to bring innovative products such as the iPhone and customdesigned processors to market rapidly. By working closely with TSMC, Apple has co-developed cutting-edge chip technologies, benefiting from early access to advanced manufacturing nodes that enhance device performance and energy efficiency. These collaborative partnerships demonstrate how supplier relationships go beyond procurement to transactional become engines of technological innovation.

Similarly, in the automotive industry, SRM has driven major advances in sustainability and digital mobility. Companies like Toyota and Volkswagen have partnered with strategic suppliers to develop hybrid and electric drivetrains, autonomous driving systems, and connected vehicle platforms. Toyota's long-standing collaboration with Denso, a global automotive supplier, has enabled co-development of advanced safety technologies and electrification components. Volkswagen's partnerships with battery suppliers such as Northvolt exemplify joint R&D investment, as both parties work together to establish gigafactories, optimize battery chemistry, and build circular recycling models for EV production. These examples underscore how supplier collaboration not only drives product innovation but also shapes the future trajectory of entire industries (Banerjee, 2018; Vargo et al., 2020).

Importantly, supplier-enabled innovation under SRM frameworks also supports process and service innovations. Logistics providers, for instance, can co-develop predictive supply chain analytics platforms with manufacturers to improve inventory visibility, reduce lead times, and enhance responsiveness. Service-oriented suppliers can collaborate on developing predictive maintenance platforms, where IoT and AI-driven solutions jointly optimize equipment uptime. Such innovations illustrate that SRM extends beyond tangible products to encompass new forms of value creation across processes and services.

SRM as a driver of innovation transforms supply chains from

transactional networks into collaborative ecosystems. Through co-development of products, joint R&D investments, platforms, and technology-sharing organizations unlock synergies that accelerate technological progress and competitive differentiation. Real-world cases in high-tech and automotive sectors demonstrate the tangible outcomes of supplier-enabled innovation, ranging from nextgeneration semiconductors to sustainable mobility solutions. By embedding innovation into supplier relationships, firms are not only enhancing their own capabilities but also shaping the evolution of industries toward greater resilience, sustainability, and customer-centricity. SRM thus emerges as a vital engine of innovation in the era of global competition and technological disruption.

2.3. Collaboration and Knowledge Sharing

Collaboration and knowledge sharing are central to the evolution of Supplier Relationship Management (SRM) as organizations navigate increasingly complex, global, and disruption-prone supply chain ecosystems. Unlike traditional supplier management frameworks that emphasize cost control and contract enforcement, modern SRM emphasizes cooperative strategies that leverage shared data, insights, and capabilities to improve performance across the supply chain. By facilitating information exchange for demand planning, adopting digital platforms for real-time collaboration, and fostering synergies across multi-tier supplier networks, SRM enhances resilience, agility, and innovation capacity (Ullah *et al.*, 2018; Li *et al.*, 2019).

A critical dimension of collaboration lies in information sharing for demand planning, forecasting, and inventory management. Supply chain inefficiencies often arise from asymmetric or delayed information flows, leading to mismatches between supply and demand, excess inventory, or stockouts. Effective SRM frameworks mitigate these inefficiencies by promoting transparent data exchange between suppliers and buyers. For example, demand forecasts generated by retailers can be shared with upstream suppliers to enable more accurate production scheduling and inventory allocation. In return, suppliers can provide updates on capacity, lead times, and raw material availability, which improve downstream planning. This reciprocal flow of information reduces uncertainty and minimizes the risk of the bullwhip effect, where small demand fluctuations amplify into larger distortions along the supply chain. Enhanced collaboration in demand planning allows firms to align production and replenishment more closely with actual market conditions, thereby lowering holding costs, improving service levels, and strengthening customer

The adoption of digital platforms enabling real-time collaboration has significantly amplified the scope and effectiveness of SRM. Cloud-based supply chain management platforms, Internet of Things (IoT) devices, and artificial intelligence (AI)-powered analytics allow organizations to share and act on information almost instantaneously. For instance, IoT-enabled sensors on shipments and production lines provide real-time visibility into inventory levels, transit conditions, and equipment performance. These data streams, when integrated into digital platforms, allow suppliers and buyers to collaboratively monitor operations and proactively resolve issues such as shipment delays, production bottlenecks, or quality deviations. Similarly, blockchain technology enhances trust

in digital collaboration by creating immutable records of transactions and supply chain events, ensuring transparency and accountability. Digital platforms not only enhance operational efficiency but also create opportunities for innovation, as partners can use shared analytics to identify emerging market trends, optimize logistics routes, or codevelop new product offerings.

Collaboration and knowledge sharing also extend beyond dyadic buyer-supplier relationships to encompass ecosystemlevel synergies across multi-tier suppliers. Modern supply chains are highly interconnected, involving not only direct suppliers but also suppliers' suppliers, distributors, logistics providers, and technology partners. SRM strategies that foster collaboration at the ecosystem level enable organizations to harness collective capabilities and manage risks more effectively. For example, in the automotive industry, manufacturers coordinate not only with first-tier component suppliers but also with second- and third-tier suppliers to ensure alignment in technology standards, quality control, and sustainability practices. This multi-tier collaboration helps address systemic vulnerabilities, such as raw material shortages or regulatory disruptions, by creating greater flexibility and redundancy in supply networks. Furthermore, knowledge sharing across ecosystems can accelerate innovation diffusion, as best practices and technological advances developed by one supplier can be adapted and scaled across the broader network.

The benefits of collaboration and knowledge sharing within SRM are both operational and strategic. Operationally, transparency in demand planning and inventory management reduces costs and improves responsiveness. Digitally enabled real-time collaboration minimizes delays and disruptions, while ecosystem-wide synergies enhance supply chain resilience. Strategically, these practices foster long-term trust and interdependence, positioning supply chain partners as cocreators of value rather than isolated transactional entities (Hämäläinen, 2019; Lucatello and Murgescu, 2020). This cultural shift toward collaborative ecosystems strengthens competitive advantage by enabling firms to adapt quickly to market volatility, leverage distributed expertise, and pursue innovation at scale.

Collaboration and knowledge sharing are indispensable elements of SRM that enable organizations to move beyond transactional supplier management toward strategic partnerships. Through shared information in demand planning, the adoption of digital platforms for real-time coordination, and the creation of ecosystem-level synergies across multi-tier suppliers, SRM enhances supply chain visibility, agility, and resilience. In an era defined by globalization, technological transformation, and recurring disruptions, organizations that invest in collaborative and knowledge-driven supplier relationships are better positioned to secure long-term competitiveness, foster innovation, and sustain operational continuity.

2.4. Fostering Resilience through SRM

Global supply chains are increasingly exposed to volatility driven by geopolitical tensions, natural disasters, pandemics, cyberattacks, and climate-related disruptions. In this environment, resilience—the ability of a supply chain to anticipate, absorb, and recover from shocks—has become as critical as efficiency and cost optimization. Supplier Relationship Management (SRM) plays a central role in fostering this resilience by embedding practices of

collaboration, trust, and shared responsibility into supplier partnerships as shown in figure 2. Through mechanisms such as risk-sharing agreements, supplier diversification with joint business continuity planning, and the cultivation of adaptive networks, SRM enables organizations to mitigate vulnerabilities and ensure supply chain continuity in the face of disruptions (Cockxet al., 2019; Fan et al., 2020).

A key resilience-building strategy in SRM is the development of risk-sharing agreements and contingency planning. Traditional supplier contracts often transfer asymmetrically, placing the burden on either the buyer or the supplier. However, resilient supply chains require balanced agreements that distribute risks and rewards equitably. For instance, risk-sharing clauses may address volatile raw material prices by linking costs to market indices or creating gain-sharing models for productivity improvements. Similarly, contingency planning requires suppliers and buyers to jointly design protocols for disruption scenarios such as port closures, transport breakdowns, or demand surges. By engaging suppliers in co-creating contingency strategies, firms not only reduce response times during crises but also foster trust and alignment of incentives. This proactive approach ensures that when disruptions occur, both parties are prepared to act cohesively rather than react independently, which often amplifies uncertainty.

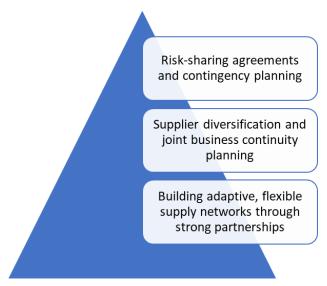


Fig 2: Fostering Resilience through SRM

Beyond contractual agreements, supplier diversification and joint business continuity planning are crucial pillars of resilience in SRM. Over-reliance on single-source suppliers, especially in globalized industries such as electronics, automotive, and pharmaceuticals, increases vulnerability to regional or supplier-specific shocks. SRM strategies that prioritize diversification across geographies, technologies, and supplier tiers reduce systemic risks by ensuring alternative sources of critical inputs. Moreover, diversification is not limited to simply expanding the supplier base; it also involves collaborative planning with suppliers to ensure redundancy in production, logistics, and distribution. Joint business continuity planning (BCP) allows partners to identify critical dependencies, map vulnerabilities, and design recovery pathways together. For example, pharmaceutical companies frequently engage in BCP with suppliers to maintain continuity of active pharmaceutical ingredients (APIs) during regulatory disruptions or global

health crises. Through shared continuity plans, suppliers and buyers align their recovery capabilities, thereby enabling faster stabilization of operations after a disruption.

Equally important to resilience is the cultivation of adaptive and flexible supply networks through strong partnerships. Unlike rigid, transactional relationships that often collapse under stress, strategic supplier partnerships foster flexibility by enabling rapid reconfiguration of supply networks. Adaptive capacity emerges when suppliers and buyers invest in mutual visibility, collaborative technology platforms, and cross-training of personnel. For instance, suppliers that integrate real-time data with buyers can pivot production schedules or logistics routes in response to unexpected demand spikes or transportation delays. Flexibility is also achieved through modular supply chain designs, where multiple suppliers can provide interchangeable components, thus reducing dependency on a single source. Strong partnerships foster trust and long-term commitment, encouraging suppliers to prioritize critical customers during disruptions and invest in joint resilience capabilities such as backup capacity or shared inventory buffers.

The integration of these resilience-oriented practices within SRM generates tangible benefits at both operational and strategic levels. Operationally, risk-sharing agreements and joint contingency planning reduce the financial and logistical impact of disruptions. Supplier diversification and shared continuity plans mitigate the risks of overdependence and improve recovery times. Adaptive partnerships enable organizations to pivot quickly and sustain service levels even in highly volatile environments. Strategically, resilience-oriented SRM strengthens competitive advantage by enhancing reputation, customer trust, and long-term stability. Firms that demonstrate reliable supply performance during crises often gain market share and strengthen stakeholder confidence, while those lacking resilience face reputational damage and financial losses.

Fostering resilience through SRM requires a deliberate shift from transactional supplier management to collaborative risk management and strategic partnerships. By embedding risk-sharing agreements, promoting supplier diversification and joint business continuity planning, and nurturing adaptive and flexible supply networks, SRM equips organizations to withstand and recover from disruptions. As global supply chains face growing uncertainty, resilience is no longer an optional capability but a core strategic imperative. Organizations that integrate resilience into their SRM frameworks will not only safeguard continuity but also enhance agility, trust, and competitiveness in increasingly complex global markets (Aziz *et al.*, 2019; Manab and Aziz, 2019).

2.5. Digital Enablers of SRM

The evolution of global supply chains into complex, interconnected networks has made Supplier Relationship Management (SRM) a strategic imperative for enterprises seeking resilience, innovation, and competitiveness. In this context, digital technologies have emerged as critical enablers of modern SRM practices. Tools such as artificial intelligence (AI), blockchain, and big data analytics provide new pathways to enhance supplier visibility, trust, and collaboration. Additionally, predictive analytics empowers firms to continuously monitor supplier performance and assess risks, while smart contracts automate transactions and governance, ensuring transparency and efficiency in supplier

collaboration (Omar *et al.*, 2020; Paz, 2020). Together, these digital enablers redefine SRM from a transactional process into a dynamic, data-driven ecosystem.

A central pillar of digital SRM is the role of AI, blockchain, and big data in enhancing supplier visibility and trust. AI enables organizations to process vast volumes of supplierrelated data, from historical performance records to external market signals, thereby improving decision-making. Machine learning algorithms identify hidden patterns in supplier behaviors such as lead time variability, defect rates. or responsiveness to demand changes, enabling proactive management of risks. Blockchain, by contrast, addresses the long-standing issue of trust in supply chain transactions. Its immutable, decentralized ledger system ensures that data shared between buyers and suppliers is tamper-proof, auditable, and transparent. This significantly reduces disputes over delivery timelines, payment terms, or compliance requirements. Big data analytics complements these technologies by integrating diverse datasets—such as logistics information, financial records, and sustainability metrics-into comprehensive supplier dashboards. Such accountability visibility fosters and transparency, strengthening trust-based relationships between partners. Equally transformative is the application of predictive

analytics for supplier performance monitoring and risk assessment. Traditional performance evaluations based on periodic audits or lagging indicators are insufficient in today's fast-paced, disruption-prone environment. Predictive analytics leverages real-time and historical data to forecast supplier behaviors and potential risks. For example, algorithms can detect early warning signs of supplier distress, such as declining financial health, rising defect rates, or geopolitical risks affecting raw material sourcing. In addition, predictive models allow companies to simulate "what-if" scenarios—such as the impact of a sudden port closure or a spike in demand—enabling proactive contingency planning with suppliers. This not only enhances supply continuity but also improves collaboration by positioning suppliers as integral stakeholders in joint risk management strategies. In industries such as automotive and electronics, predictive analytics is already being deployed to anticipate capacity bottlenecks and ensure timely intervention, thus preventing costly delays and production halts.

Another digital enabler reshaping SRM is the use of smart contracts for transparent and efficient supplier collaboration. Smart contracts, enabled by blockchain technology, are selfexecuting agreements coded with predefined conditions that trigger automatic actions once terms are met. In supplier relationships, this translates into streamlined procurement processes, faster payments, and reduced administrative overhead. For instance, when a supplier delivers components meeting agreed quality standards, the smart contract can automatically release payment without manual intervention. Similarly, compliance with sustainability requirements such as carbon emission thresholds—can be monitored and enforced through coded conditions. By reducing reliance on intermediaries and minimizing disputes, smart contracts strengthen trust and encourage suppliers to commit to longarrangements. collaborative Moreover, transparency ensures that all parties have equal access to contract terms and performance outcomes, eliminating asymmetries of information that often undermine supplierbuyer relationships.

The synergy of these digital enablers creates a holistic SRM ecosystem characterized by visibility, predictability, and trust. AI and big data improve the ability to understand suppliers at granular levels, blockchain ensures the integrity and transparency of shared data, predictive analytics provides foresight into risks and performance, and smart contracts automate enforcement of agreements. Collectively, these tools reduce transaction costs, accelerate decision-making, and align incentives across stakeholders. Importantly, they also enable enterprises to go beyond compliance-focused supplier management toward relationship-based strategies centered on shared value creation, resilience, and sustainability (Marques, 2019; Manning, 2020).

The digitalization of SRM represents a paradigm shift in how organizations manage their supplier networks. By leveraging AI, blockchain, big data, predictive analytics, and smart contracts, firms can build trust, foster transparency, and proactively manage risks in their supplier relationships. These technologies transform SRM into a future-ready system capable of not only improving operational efficiency but also strengthening collaboration and resilience in global supply chain ecosystems. As supply chains face rising uncertainty and demand for agility, digital enablers will become the cornerstone of strategic SRM practices that ensure competitiveness, adaptability, and sustainable growth (Avelar-Sosa *et al.*, 2019; Reinkemeyer, 2020).

2.6. Strategic Implications for Stakeholders

Supplier Relationship Management (SRM) has evolved into a strategic function within global supply chain ecosystems, shaping competitiveness, innovation, and resilience. As supply chains grow more complex and disruption-prone, effective SRM no longer benefits only enterprises but also creates value for suppliers and the broader policy environment as shown in figure 3. The strategic implications of SRM for different stakeholders—enterprises, suppliers, and policymakers—highlight its pivotal role in fostering collaborative, transparent, and sustainable supply ecosystems (Dubey *et al.*, 2019; Adesanya *et al.*, 2020).

For enterprises, SRM represents a pathway to enhanced competitiveness, reduced risk, and stronger innovation pipelines. Traditional supplier management models, which emphasized cost reduction and transactional efficiency, are insufficient in an era of global volatility. Enterprises now compete on the strength of their supply networks, and strategic SRM enables them to leverage supplier capabilities as sources of differentiation. By building strong, trust-based partnerships, companies gain access to suppliers' expertise, new technologies, and market insights, accelerating innovation cycles. For instance, co-development agreements with high-tech suppliers can shorten time-to-market for new products and reduce research and development costs. Risk reduction is another critical outcome, as SRM frameworks integrate supplier risk assessments, performance monitoring, and contingency planning into enterprise strategies. This proactive approach mitigates vulnerabilities related to supply disruptions, quality issues, or regulatory non-compliance (Mishra et al., 2020; Kitchin and Dodge, 2020). Ultimately, enterprises adopting advanced SRM practices secure competitive advantage by aligning operational efficiency with innovation and resilience.

Fig 3: Strategic Implications for Stakeholders

From the perspective of suppliers, SRM creates opportunities for stable partnerships, co-creation, and long-term growth. Suppliers are no longer viewed as interchangeable vendors but as strategic collaborators whose capabilities can directly influence product quality, innovation potential, and customer satisfaction. By participating in long-term SRM programs, suppliers benefit from predictable demand, more transparent communication, and joint problem-solving approaches. Stability in buyer-supplier relationships fosters trust, enabling suppliers to invest in new technologies and capacity expansion with reduced risk. Moreover, SRM frameworks increasingly emphasize co-creation opportunities through joint R&D projects, shared digital platforms, and integrated planning systems (Abbate et al., 2019; Gou et al., 2019). This creates an ecosystem where suppliers can showcase their innovative strengths while aligning with enterprise strategies. For example, in the automotive sector, suppliers engaged in collaborative SRM initiatives have co-developed advanced materials, electric vehicle components, and sustainabilityfocused solutions, driving both technological advancement and market growth. By positioning suppliers as partners in creation, SRM enhances their competitiveness and sustainability.

At the systemic level, policymakers play a crucial role in shaping the environment in which SRM strategies operate. The strategic implications of SRM for policymakers lie in its potential to foster ethical, transparent, and sustainable supply ecosystems. As global supply chains extend across multiple jurisdictions, issues of labor practices, environmental impact, and cross-border compliance become central to supply chain governance. Policymakers can support SRM by developing regulatory frameworks that incentivize transparency, encourage sustainable practices, and enforce ethical standards. For example, mandates on traceability, carbon disclosure, and due diligence in supplier selection push enterprises and suppliers to adopt responsible practices. Digital enablers such as blockchain and AI-driven monitoring provide the tools to enforce these regulations effectively. Furthermore, policymakers can foster resilience by promoting regional supplier diversification and investing in digital infrastructure that facilitates data-driven collaboration across supply networks. In doing so, they help reduce systemic risks associated with over-concentration of suppliers in geopolitically sensitive regions or reliance on unsustainable practices. Thus, SRM, supported by sound policy frameworks, contributes to building resilient, ethical,

and sustainable supply chain ecosystems that benefit economies and societies at large.

The convergence of these implications' highlights SRM as a shared value mechanism among stakeholders. For enterprises, SRM strengthens competitiveness and innovation; for suppliers, it creates stability and growth opportunities; and for policymakers, it enables ethical and resilient governance of global supply chains. The interconnected nature of these outcomes underscores the systemic importance of SRM in the 21st-century supply landscape. As disruptions from pandemics, climate change, and geopolitical tensions continue to reshape supply chains, SRM will remain central to enabling stakeholders to balance efficiency, innovation, and sustainability.

The strategic implications of SRM for stakeholders extend beyond operational efficiency into the realms of competitiveness, innovation, and sustainability (Sunigovets, 2019; Ajibike *et al.*, 2020). Enterprises harness SRM to reduce risk and accelerate innovation, suppliers secure stable partnerships and growth opportunities, and policymakers ensure the ethical and resilient functioning of supply ecosystems. Together, these outcomes demonstrate that SRM is not only a business strategy but also a collaborative framework for strengthening global supply chain ecosystems in an era defined by uncertainty and interdependence.

2.7. Future Outlook

The future of Supplier Relationship Management (SRM) is being reshaped by converging forces of sustainability, digitalization, and the demand for resilient and adaptive supply networks. As supply chains face increasing pressures from climate change, regulatory requirements, and shifting customer expectations, SRM is evolving beyond a transactional or even strategic partnership model into a holistic ecosystem framework. The integration of sustainability and Environmental, Social, and Governance (ESG) compliance, ecosystem-based collaboration, and the transformation toward autonomous and circular supply chains represent three defining trajectories that will shape the future of SRM (Armitage et al., 2019; White et al., 2020).

A major driver of future SRM strategies will be the integration of sustainability and ESG compliance. Enterprises are no longer evaluated solely on cost efficiency or operational performance; stakeholders, including investors, regulators, and consumers, increasingly demand transparent, ethical, and environmentally responsible

practices across the entire value chain. This shift means SRM must embed ESG principles into supplier selection, monitoring, and development. Suppliers will be evaluated not only for their cost competitiveness but also for their carbon footprints, labor practices, and alignment with circular economy principles. Digital technologies such as blockchain and advanced analytics will enable real-time monitoring of ESG compliance, while performance scorecards will incorporate sustainability metrics alongside traditional financial and operational indicators. This evolution will push suppliers to innovate in reducing waste, adopting renewable energy, and improving labor conditions, thereby reinforcing the supply chain as a driver of sustainable transformation. Looking ahead, SRM will also evolve from dyadic buyersupplier relationships to ecosystem-based collaboration models. The traditional focus on bilateral contracts and relationships will give way to multi-tier networks where suppliers, customers, technology providers, logistics partners, and even competitors interact to co-create value. This ecosystem approach recognizes that innovation, risk management, and resilience are better achieved collectively rather than in isolation. Digital platforms will serve as the backbone of these ecosystems, enabling real-time data exchange, joint demand forecasting, shared product development, and collaborative sustainability initiatives. For instance, in the healthcare sector, multi-tier collaborations between pharmaceutical companies, raw material suppliers, logistics providers, and governments can ensure robust vaccine supply chains that are resilient to disruptions. The emphasis will shift from competition to coopetition, where value is created and shared across networks, enhancing the adaptability and innovation potential of global supply chains. Another defining dimension of the SRM future is its role in shaping autonomous, adaptive, and circular supply chains. Autonomous supply chains, enabled by AI, IoT, and blockchain, will be capable of self-monitoring and selfcorrecting disruptions in real time. Predictive analytics will anticipate risks, while machine learning models will recommend and execute adaptive responses such as rerouting logistics or adjusting supplier allocations. In this context, SRM becomes the strategic framework that governs these digital ecosystems, ensuring that automated processes align with enterprise goals and sustainability priorities. Moreover, circular economy principles will be deeply embedded within SRM strategies. Instead of linear take-make-dispose models, supplier relationships will focus on resource recovery, reuse, and closed-loop production systems. Suppliers will collaborate with enterprises not only to deliver inputs but also to facilitate product lifecycle extensions, recycling, and sustainable sourcing (Johnsen et al., 2018; Brown et al., 2020). This reorientation positions SRM as a critical enabler of supply chain models that are not only adaptive and autonomous but also regenerative and circular in design. The future trajectory of SRM suggests a fundamental

The future trajectory of SRM suggests a fundamental redefinition of how enterprises and their supply networks operate. Beyond cost efficiency and risk management, SRM will increasingly become a mechanism for ensuring corporate sustainability, enabling multi-stakeholder collaboration, and creating adaptive and circular ecosystems. Enterprises that successfully adopt these principles will gain competitive advantages in terms of customer trust, regulatory compliance, and long-term innovation capacity. Suppliers that align with these expectations will be better positioned to secure enduring partnerships and access new markets, while

policymakers will view SRM as a critical tool in fostering ethical, transparent, and sustainable supply networks.

The future outlook of SRM reflects its transformation into a dynamic, digitally enabled, and sustainability-oriented framework. By integrating ESG compliance, advancing ecosystem collaboration, and driving the evolution of autonomous and circular supply chains, SRM will redefine the foundations of global supply ecosystems (Markopoulos *et al.*, 2018; Hoang, 2018). This transition will ensure that supply chains are not only efficient and resilient but also aligned with broader societal goals of sustainability, adaptability, and long-term value creation.

3. Conclusion

Supplier Relationship Management (SRM) has emerged as a strategic lever that extends well beyond traditional procurement functions, becoming integral to fostering innovation, collaboration, and resilience in global supply chains. By shifting the paradigm from transactional interactions to long-term, trust-based partnerships, SRM enables co-development of products, shared technological advancements, and joint problem-solving initiatives. Such collaborative frameworks not only accelerate innovation pipelines but also enhance the agility of supply networks in responding to disruptions. Moreover, through mechanisms such as risk-sharing agreements, supplier diversification, and business continuity planning, SRM provides a foundation for building adaptive and resilient supply ecosystems capable of withstanding geopolitical, environmental, and economic shocks.

The integration of digital enablers—ranging from artificial intelligence and big data to blockchain and smart contracts—has further amplified the role of SRM in strengthening supplier visibility, predictive risk management, and transparent collaboration. These technologies, coupled with sustainability-driven governance frameworks, are pushing SRM into a new era where ethical practices, ESG compliance, and circular economy principles are embedded within supplier evaluation and performance management. In this sense, SRM is not only a driver of operational efficiency but also a catalyst for broader societal and environmental transformation.

Looking ahead, SRM-driven ecosystems are poised to form the backbone of sustainable and competitive global supply chains. By facilitating ecosystem-based collaboration, SRM fosters shared innovation, collective risk mitigation, and joint accountability for sustainability outcomes. As supply chains move toward autonomous, adaptive, and circular models, SRM will remain the strategic architecture guiding their evolution. Enterprises that leverage SRM as a central capability will secure long-term competitiveness, suppliers will gain enduring growth opportunities, and policymakers will view SRM as a cornerstone of ethical and resilient supply networks. Ultimately, SRM represents not just a management tool but a transformative force shaping the future of global supply ecosystems.

4. References

- 1. Abbate T, Codini AP, Aquilani B. Knowledge cocreation in open innovation digital platforms: processes, tools and services. J Bus Ind Mark. 2019;34(7):1434-47.
- Adesanya A, Yang B, Bin Iqdara FW, Yang Y. Improving sustainability performance through supplier relationship management in the tobacco industry. Supply

- Chain Manag. 2020;25(4):413-26.
- 3. Adeshina YT. Leveraging business intelligence dashboards for real-time clinical and operational transformation in healthcare enterprises [dissertation]. [Unknown location]: [Unknown institution]; [date unknown].
- 4. Ajayi SAO, Akanji OO. Impact of BMI and menstrual cycle phases on salivary amylase: a physiological and biochemical perspective. [Unknown journal]. 2021.
- Ajibike WA, Adeleke AQ, Mohamad F, Nawi MNM, Bamgbade JA, Riazi SRM, et al. Achieving environmental sustainability in Malaysian construction industry through institutional pressure. J Crit Rev. 2020;7(7):1159-67.
- Akpan UU, Adekoya KO, Awe ET, Garba N, Oguncoker GD, Ojo SG. Mini-STRs screening of 12 relatives of Hausa origin in northern Nigeria. Niger J Basic Appl Sci. 2017;25(1):48-57.
- 7. Akpan UU, Awe TE, Idowu D. Types and frequency of fingerprint minutiae in individuals of Igbo and Yoruba ethnic groups of Nigeria. Ruhuna J Sci. 2019;10(1).
- 8. Annan CA. Mineralogical and geochemical characterisation of monazite placers in the Neufchâteau syncline (Belgium) [dissertation]. [Unknown location]: [Unknown institution]; 2021.
- 9. Armitage DR, Okamoto DK, Silver JJ, Francis TB, Levin PS, Punt AE, *et al.* Integrating governance and quantitative evaluation of resource management strategies to improve social and ecological outcomes. Bioscience. 2019;69(7):523-32.
- 10. Au-Yeung C, Venneman E. Unlocking value with supplier relationship management practices: a case study of how to utilize SRM as a competitive tool. [Unknown journal]. 2019.
- Avelar-Sosa L, García-Alcaraz JL, Maldonado-Macías AA. Evaluation of supply chain performance. In: Management and industrial engineering. Cham: Springer International Publishing; 2019.
- 12. Awe ET, Akpan UU. Cytological study of Allium cepa and Allium sativum. [Unknown journal]. 2017.
- 13. Awe ET. Hybridization of snout mouth deformed and normal mouth African catfish Clarias gariepinus. Anim Res Int. 2017;14(3):2804-8.
- 14. Awe ET, Akpan UU, Adekoya KO. Evaluation of two MiniSTR loci mutation events in five father-mother-child trios of Yoruba origin. Niger J Biotechnol. 2017;33:120-4.
- 15. Awe T. Cellular localization of iron-handling proteins required for magnetic orientation in C. elegans [dissertation]. [Unknown location]: [Unknown institution]; 2021.
- 16. Aziz NAA, Manab NA. Meeting the stakeholder needs and sustaining business through sustainability risk management practices: a case study of Malaysian environmentally sensitive companies. In: Sustaining our environment for better future: challenges and opportunities. Singapore: Springer Singapore; 2019. p. 195-208.
- 17. Banerjee A. Blockchain technology: supply chain insights from ERP. In: Advances in computers. Vol. 111. Elsevier; 2018. p. 69-98.
- 18. Bankole AO, Nwokediegwu ZS, Okiye SE. Emerging cementitious composites for 3D printed interiors and exteriors: a materials innovation review. J Front

- Multidiscip Res. 2020;1(1):127-44.
- 19. Bankole AO, Nwokediegwu ZS, Okiye SE. A conceptual framework for AI-enhanced 3D printing in architectural component design. J Front Multidiscip Res. 2021;2(2):103-19.
- 20. Benzaid C, Taleb T. AI-driven zero touch network and service management in 5G and beyond: challenges and research directions. IEEE Netw. 2020;34(2):186-94.
- 21. Brown P, Bocken N, Balkenende R. How do companies collaborate for circular oriented innovation? Sustainability. 2020;12(4):1648.
- 22. Brun A, Karaosman H, Barresi T. Supply chain collaboration for transparency. Sustainability. 2020;12(11):4429.
- 23. Cockx R, Armbruster D, Bendul JC. Resource sharing as supply chain disruption risk management measure. IFAC-PapersOnLine. 2019;52(13):802-7.
- 24. Dubey R, Gunasekaran A, Childe SJ, Papadopoulos T, Helo P. Supplier relationship management for circular economy: influence of external pressures and top management commitment. Manag Decis. 2019;57(4):767-90.
- 25. Ejibenam A, Onibokun T, Oladeji KD, Onayemi HA, Halliday N. The relevance of customer retention to organizational growth. J Front Multidiscip Res. 2021;2(1):113-20.
- 26. Fan Y, Stevenson M, Li F. Supplier-initiating risk management behaviour and supply-side resilience: the effects of interpersonal relationships and dependence asymmetry in buyer-supplier relationships. Int J Oper Prod Manag. 2020;40(7/8):971-95.
- 27. Gold S, Heikkurinen P. Transparency fallacy: unintended consequences of stakeholder claims on responsibility in supply chains. Account Audit Account J. 2018;31(1):318-37.
- 28. Gou J, Li N, Lyu T, Lyu X, Zhang Z. Barriers of knowledge transfer and mitigating strategies in collaborative management system implementations. VINE J Inf Knowl Manag Syst. 2019;49(1):2-20.
- 29. Gure AK, Karugu J. Strategic management practices and performance of small and micro enterprises in Nairobi City County, Kenya. Int Acad J Hum Resour Bus Adm. 2018;3(1):1-26.
- 30. Halliday NN. Assessment of major air pollutants, impact on air quality and health impacts on residents: case study of cardiovascular diseases [master's thesis]. Cincinnati (OH): University of Cincinnati; 2021.
- 31. Hämäläinen M. Organizations' digital transformation—toward a systematic approach to organizations' digital transformation [dissertation]. [Unknown location]: University of Jyväskylä; 2019.
- 32. Hemphill TA. The innovation governance dilemma: alternatives to the precautionary principle. Technol Soc. 2020;63:101381.
- 33. Hoang T. The role of the integrated reporting in raising awareness of environmental, social and corporate governance (ESG) performance. In: Stakeholders, governance and responsibility. Emerald Publishing Limited; 2018. p. 47-69.
- 34. Jaskó S, Skrop A, Holczinger T, Chován T, Abonyi J. Development of manufacturing execution systems in accordance with Industry 4.0 requirements: a review of standard-and ontology-based methodologies and tools. Comput Ind. 2020;123:103300.

- 35. Johnsen T, Howard M, Miemczyk J. Purchasing and supply chain management: a sustainability perspective. London: Routledge; 2018.
- 36. Katsina IA, Johnbull OA, Ovenseri AC. Evaluation of citrus sinensis (orange) peel pectin as a binding agent in erythromycin tablet formulation. World J Pharm Pharm Sci. 2021;10(10):188-202.
- 37. Kitchin R, Dodge M. The (in)security of smart cities: vulnerabilities, risks, mitigation, and prevention. In: Smart cities and innovative urban technologies. London: Routledge; 2020. p. 47-65.
- 38. Li M, Shen L, Huang GQ. Blockchain-enabled workflow operating system for logistics resources sharing in ecommerce logistics real estate service. Comput Ind Eng. 2019;135:950-69.
- 39. Lucatello C, Murgescu M. Investigating and evaluating software ecosystem modelling in practice in a tier-2 vehicle telematics company. [Unknown journal]. 2020.
- 40. Manab NA, Aziz NAA. Integrating knowledge management in sustainability risk management practices for company survival. Manag Sci Lett. 2019;9(4):585-94.
- 41. Manning L. Moving from a compliance-based to an integrity-based organizational climate in the food supply chain. Compr Rev Food Sci Food Saf. 2020;19(3):995-1017.
- 42. Markopoulos E, Kirane IS, Gann EL, Vanharanta H. A democratic, green ocean management framework for environmental, social and governance (ESG) compliance. In: International Conference on Human Interaction and Emerging Technologies; 2020 Apr. Cham: Springer International Publishing; 2020. p. 21-33.
- 43. Marques JC. Private regulatory capture via harmonization: an analysis of global retailer regulatory intermediaries. Regul Gov. 2019;13(2):157-76.
- 44. Mishra S, Anderson K, Miller B, Boyer K, Warren A. Microgrid resilience: a holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies. Appl Energy. 2020;264:114726.
- 45. Nujen BB, Mwesiumo DE, Solli-Sæther H, Slyngstad AB, Halse LL. Backshoring readiness. J Glob Oper Strateg Sourc. 2019;12(1):172-95.
- 46. Nwokediegwu ZS, Bankole AO, Okiye SE. Advancing interior and exterior construction design through large-scale 3D printing: a comprehensive review. IRE J. 2019;3(1):422-49.
- 47. Nwokediegwu ZS, Bankole AO, Okiye SE. Revolutionizing interior fit-out with gypsum-based 3D printed modular furniture: trends, materials, and challenges. Int J Multidiscip Res Growth Eval. 2021;2(3):641-58.
- 48. Ogundipe F, Sampson E, Bakare OI, Oketola O, Folorunso A. Digital transformation and its role in advancing the Sustainable Development Goals (SDGs). Transformation. 2019;19:48.
- 49. Okiye SE. Model for advancing quality control practices in concrete and soil testing for infrastructure projects: ensuring structural integrity. IRE J. 2021;4(9):295.
- 50. Omar IA, Jayaraman R, Salah K, Debe M, Omar M. Enhancing vendor managed inventory supply chain operations using blockchain smart contracts. IEEE Access. 2020;8:182704-19.
- 51. Oni O, Adeshina YT, Iloeje KF, Olatunji OO. Artificial

- intelligence model fairness auditor for loan systems. [Unknown journal]. 2018;8993:1162.
- 52. Onyekachi O, Onyeka IG, Chukwu ES, Emmanuel IO, Uzoamaka NE. Assessment of heavy metals; lead (Pb), cadmium (Cd) and mercury (Hg) concentration in Amaenyi dumpsite Awka. IRE J. 2020;3:41-53.
- 53. Paz DH. Enhancing cyber supply chain resilience through collaborative security measures in large-scale retails. J Artif Intell Mach Learn Cloud Comput Syst. 2020;4(11):1-6.
- 54. Reinkemeyer L. Process mining in action. In: Process mining in action principles, use cases and outlook. [Unknown location]: [Unknown publisher]; 2020. p. 116-28.
- 55. Sergeeva N. Towards more flexible approach to governance to allow innovation: the case of UK infrastructure. Int J Manag Proj Bus. 2020;13(1):1-19.
- 56. Sunigovets O. Enterprise competitiveness in the digital economy. In: SHS Web of Conferences. Vol. 67. EDP Sciences; 2019. p. 04012.
- 57. Ullah F, Sepasgozar SM, Wang C. A systematic review of smart real estate technology: drivers of, and barriers to, the use of digital disruptive technologies and online platforms. Sustainability. 2018;10(9):3142.
- 58. Vargo SL, Akaka MA, Wieland H. Rethinking the process of diffusion in innovation: a service-ecosystems and institutional perspective. J Bus Res. 2020;116:526-34
- 59. Vermesan O, Bacquet J, editors. Next generation Internet of Things: distributed intelligence at the edge and human machine-to-machine cooperation. Gistrup, Denmark: River Publishers; 2019.
- 60. White EM, Rahill B, Gough M, Spurgeon J. How natural capital approaches can support sustainable investments and markets. [Unknown journal]. 2020.